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Many thanks to Haniel Barbosa for letting me use his slides. 1



PROOF ASSISTANTS

SMT
Solvers

For example, SMT solvers are called from proof assistants

I Any fraction of wrong answers is bad

2



Formal
 Verification

Program
Analysis

Automatic 
Testing

Program
Synthesis

SMT
Solvers

For example, SMT solvers called billions of times a day at AWS in a security critical setting...

I Even a tiny fraction of wrong answers is catastrophic
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Bugs in SMT Solvers

• State-of-the-art solvers are large projects:

• cvc5: 300k LoC (C++)

• z3: 500k LoC (C++)

• How do developers try to avoid bugs?

• Code reviews

• Testing on benchmark sets

• Random input testing

• But bugs remain:

• Every year SMT-COMP has disagreements between solvers

• Fuzzing tools often find bugs in solvers
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Can We Just Certify the Solvers?

• Large, complex code bases are too costly to certify

• A (simpler) certified system can be too slow [Fleury2018; Fleury2019-sat]

• Certifying/qualifying a system freezes it, potentially blocking improvements

• Working around adding new features slow and costly [Burdy2018]
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For your consideration: proofs!

• Proofs are a justification of the logical reasoning the solver has performed to find a solution

• A proof can be checked independently
• Checkers have smaller trusted base

• lfsc: 5.5k (C++) LoC checker + 2k (LFSC) LoC signatures

• Alethe: the Carcara checker (and elaborator): 12k (Rust) LoC

• Proof checking is generally more e�ciently than solving the problem

• Proofs can be reconstructed within skeptical proof assistants

• Every logical inference verified by trusted kernel

• Proof calculus can be embedded in the proof assistant (and proven correct)

• Proof steps are replayed within the proof assistant

• Confidence in results is decoupled from the solver’s implementation
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Applications of SMT Proofs

• Strong correctness guarantees

• High-quality proofs can be used to facilitate automated compliance

• Integrations with other systems

• Automation in interactive theorem proving

• External proof cecking can identify bugs in proof rules

• Valuable for debugging

• Formalization of proof rules improves code base

• Uncovers existing issues

• Forces modular and clean code design

• Improves tool robustness

• A rich source of data that can be mined for various purposes (e.g., interpolation, profiling)
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SMT solving

• A cooperation of propositional reasoning and theory-specific reasoning

• Employs a SAT solver to perform propositional reasoning

• Employs a combination of procedures for theory reasoning

• E.g. equality and uninterpreted functions (EUF) (Congruence Closure)

• E.g. linear integer/real arithmetic (LIA, LRA) (Simplex)

• Combination of theories (Nelson-Oppen)

• Decidability depends on the theories being used

• E.g. strings, non-linear integer arithmetic are incomplete

• Problems involving axioms (user-defined theories) are at best semi-decidable
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Boolean Satisfiability (SAT)

Propositional formulas in CNF: C ::= p | ¬p | C _ C

' ::= C | ' ^ '

Given a formula ' in propositional logic, find an assignment M mapping every proposition ' to

{>,?} such that M(') = > (or M |= ').

Example

Is ' = (p _ ¬q) ^ (¬r _ ¬p) ^ q satisfiable?

No combination of valuations for these propositions such that ' is >.
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Boolean Satisfiability (SAT)

Unsatisfiability proof of (p _ ¬q) ^ (¬r _ ¬p) ^ q ^ (r _ ¬q):

r _ ¬q q
Res

r ¬r _ ¬p
Res

¬p

p _ ¬q q
Res

p
Res

?
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Satisfiability Modulo Theories (SMT)

First-order formulas in CNF:
t ::= x | f(t, . . . , t)
' ::= p(t, . . . , t) | ¬' | ' _ ' | 8x1 . . . xn. '

Given a formula ' in FOL and background theories T1, . . . , Tn, finding a model M giving an

interpretation to all terms and predicates such that M |=T1,...,Tn '

Example

Is ' satisfiable modulo equality and arithmetic?

' |=LIA

x1 ' 0 |=EUF f(x1) ' f(0)

x1 ' 0 |=LIA x2 + x1 6> x2 + 1

Therefore |=EUF[LIA ¬'
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Satisfiability Modulo Theories (SMT)

Unsatisfiability proof of (x1 � 0) ^ (x1 < 1) ^ (f(x1) 6' f(0) _ x2 + x1 > x2 + 1):

Let ⇧1: x1 � 0 x1 < 1
LIA

x1 ' 0

Then the final proof is:

⇧1

x1 ' 0
EUF

f(x1) ' f(0)) f(x1) 6' f(0) _ x2 + x1 > x2 + 1
Res

x2 + x1 > x2 + 1

⇧1

x1 ' 0
LIA

x2 + x1 6> x2 + 1
Res

?
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Challenges for SMT proofs

• Collecting and storing proofs e�ciently

Many attempts, but not there yet

[Sutcli↵e2004; Katz2016; Hadarean2015; Moskal2008-rocket; deMoura2008-proofs; Schulz2013-e; Kovacs2013;

Weidenbach2009; Bouton2009]

• Proofs for sophisticated preprocessing and rewriting techniques

Initial progress but many challenges remain

[Barbosa2020]

• Proofs for complex procedures in theory solvers (e.g., CAD, strings)

Open

• Standardizing a proof format

Open

• Scalable, trustworthy checking

Many attempts, but not there yet

[Blanchette2013; Stump2013; Ekici2017; Barbosa2020; Schurr2021]
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The Journey

• CVC4’s old proof module struggled with many of those challenges

• For two years, we reimplemented its proof module from scratch

• Producing proofs should not significantly change the behavior of the solver

• Incorporate (almost) all relevant optimizations

• Coarse-grained steps for non-supported inferences

• Modular infrastructure allowing fine-grained error localization

• Independent proof components, combined in a trusted manner

• Every rule associated with an internal proof checker

• Custom eager/lazy generation of proofs

• Proof reconstruction (elaboration) via internal post-processing

• Support internal proof format and conversions to di↵erent proof formats

• lfsc, Alethe, Lean
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Proof module architecture for CDCL(T )

Pre-processor'

'

Clausifier SAT Solver Post-processor
Cp

1 . . . Cp
m P : ~C ! ?

P :  1 ! C1 . . . P :  m ! Cm

Theory Combination

T1

T2

L1 P : L1

L2 P : L2

. . . Tk
Lk P : Lk

SMT Proof Post-processor

P : ' ! ??

sat

P : ' ! �1 . . . P : ' ! �n

Propositional Engine

Theory Engine
SMT Solver

Asserted Literals
L

P : L

~� P : ~� ! ?

•
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Main components: Internal proof calculus

• Rules for equality reasoning (congruence closure)

• Rules for rewriting, substitution

• Coarse-grained rules for capturing multiple core utilities

• Rules for witness forms

• Enable introduction and correct handling of new symbols

• Rules for scoped reasoning

• Enable local reasoning, via assumptions and )-introduction

• Theory-specific rules

• Boolean (clausification, resolution, ...)

• Arithmetic (linear, non-linear, integer, rationals, transcendentals)

• Arrays, Datatypes, Bit-vectors, Quantifiers, ...

Documentation: https://cvc5.github.io/docs/latest/proofs/proof_rules.html
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Main components: Library of proof generators

• Encapsulate common patterns for building proofs

• Solving components store information during solving

• Derived facts are distributed with associated proof generators

• When proof generator is requested for fact ', its internal information is used to produce the proof

P : '.
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Proof module architecture

Pre-processor'

'

Clausifier SAT Solver Post-processor
Cp

1 . . . Cp
m P : ~C ! ?
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Theory Combination
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T2
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. . . Tk
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SMT Proof Post-processor

P : ' ! ??

sat
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• Actually, proof generators are transmitted between components

• Only during post-processing are proofs fully computed
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Proof generation for substitution and rewriting

• Substitution and rewriting inferences recorded without further details

• No need to instrument utilities to track how terms are converted

• Only macro steps and used rewrites rules are stored in generators

a ' 0 b ' 1
SR

(a > b ^ F ) ' ?

a ' 0 b ' 1
SUBS

(a > b ^ F ) ' (0 > 1 ^ F )
RW

(0 > 1 ^ F ) ' ?
(a > b ^ F ) ' ?

arith rw
0 > 1 ' ?

refl
F ' F

cong

(0 > 1 ^ F ) ' (? ^ F )
bool rw

(? ^ F ) ' ?
trans

(0 > 1 ^ F ) ' ?

• Heavily used for strings, preprocessing, bitblasting, and so on.
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RW
(0 > 1 ^ F ) ' ?

(a > b ^ F ) ' ?

arith rw
0 > 1 ' ?

refl
F ' F

cong

(0 > 1 ^ F ) ' (? ^ F )
bool rw

(? ^ F ) ' ?
trans

(0 > 1 ^ F ) ' ?

• Heavily used for strings, preprocessing, bitblasting, and so on.
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Demo!

Consider the following unsatisfiable SMT problem:

x ' y ^ f(x) 6' f(y)

which in SMT-LIB is:

(set-logic QF_UFLIA)

(declare-const x Int)

(declare-const y Int)

(declare-fun f (Int) Int)

(assert (= x y))

(assert (not (= (f x) (f y))))

(check-sat)
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Integration with proof assistants

• Detailed proofs help interoperability with proof assistants

• The steps to discharge proof goals using SMT solvers:

1 Encode proof goal as an SMT-LIB problem

2 Solve the problem, produce proof

3 Convert SMT proof into the proof assistant’s format to prove original goal

• The last step can be performed in two ways:

1 certified : bridge theorem between formats

2 certifying : ad-hoc conversion between proofs
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Lean-SMT

• A work-in-progress smt tactic to discharge Lean proof goals

• We apply a certifying approach to convert SMT proofs into Lean proofs

• Our goal is to (eventually...) reproduce the success of similar approaches in other proof assistants

• SMTCoq in the Coq proof assistant
• Sledgehammer in the Isabelle/HOL proof assistant

• “The di↵erence between walking and running” – Larry Paulson
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Other current/future work

• Detailed proofs for challenging theories, such as non-linear arithmetic

• Extending Sledgehammer with bit-vectors

• Mechanizing bit-blasting and bit-vector rewrites

• Extending the reconstruction tactic

• Handling highly custom theory rewrites via a dedicated DSL

• Automatic translation of rewrites specification into proof assistants

• Parallel proof checking

• SMT proofs are highly amenable for parallel proof checking

• Work-in-progress in this direction in the Carcara proof checker for Alethe

• Development of a proof library

• ...
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