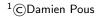
A categorical framework for congruence of bisimilarity

Tom Hirschowitz and Ambroise Lafont

Topos Institute Colloquium 2023

- Operational semantics.
 - Behavioural equivalences.
 - Bisimilarity.
 - Congruence of bisimilarity.



Operational semantics

A set of techniques for constructing mathematical models of programming languages.

General idea:

- Programs ∈ syntax, an inductively-generated object. (Think initial algebra for some endofunctor Σ.)
- Evaluation steps \approx (directed) edges between programs.

 \rightsquigarrow Evaluation graph.

Behavioural equivalences

Goal

Correctness of program transformations.

Typically: optimisations.

Observational equivalence of programs fragments, $P \approx Q$:

Definition

Fix some basic type, e.g., the booleans bool.

For all valid contexts C of type bool, $C\{P\}$ "=" $C\{Q\}$, i.e.,

- one terminates iff the other does, and
- when they do, they converge to the same boolean.

Problem!

Hard to establish.

Standard idea

Find some different equivalence relation \sim such that

$$P \sim Q \implies P \approx Q$$
,

and \sim is easier to establish than $\approx.$

Typical choice for ~: bisimilarity.

How to prove $P \sim Q$?

Exhibit a bisimulation \mathscr{R} such that $P \mathscr{R} Q$.

Indeed:

Bisimilarity is the largest bisimulation.

Enhanced bisimilarity

In a higher-order setting, one often restricts to

Definition (Enhanced relations)Closed under auxiliary operations, typically capture-avoiding
substitution: $P \mathcal{R} O \implies P[\sigma] \mathcal{R} O[\sigma],$

where σ : variables \rightarrow programs.

Bisimulation + enhancement

Enhanced bisimilarity := greatest enhanced bisimulation relation.

In pure λ -calculus

Enhanced bisimilarity = Abramsky's applicative bisimilarity.

Congruence of enhanced bisimilarity

Crucial step for
$$P \sim Q \Longrightarrow P \approx Q$$

Enhanced bisimilarity is a congruence:

$$\forall C, P \sim Q \Longrightarrow C\{P\} \sim C\{Q\}.$$

Far from obvious:

- False in Milner's π-calculus, a kernel language for concurrent programming.
- Hard in pure λ -calculus.
 - Domain-theoretic proof by Abramsky.
 - Syntactic proof by Howe \rightarrow Howe's method.

A general congruence theorem for enhanced bisimilarity.

Enhanced bisimilari

A glimpse of previous work

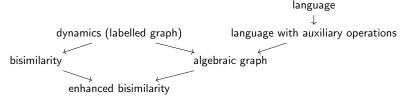
- Syntactic frameworks (Howe, 1996; Bernstein, 1998). Limited to untyped, monosorted languages.
- Categorical frameworks (Turi and Plotkin, 1997; Fiore and Staton, 2001; Staton, 2008).
 - Did not cover higher-order languages until
 - a first framework with Borthelle (BHL 2020), relational, and
 - recent work by Goncharov et al. (G+ 2023, see recent Colloquium talk by Sergey), coalgebraic.

Quick comparison with G+ 2023 (more of a wild guess, really):

- In principle, coalgebra covers more "transition flavours" (e.g., probabilistic languages),
- but less "rule arities" (see below).

This work: generalises and simplifies BHL 2020.

• Introduce abstract notions of



- Introduce signatures for generating algebraic graphs from basic data (as in initial-algebra semantics).
- Prove:

Under suitable hypotheses, enhanced bisimilarity is a congruence in the generated algebraic graphs.

But let's start with a concrete example.

A language: λ -calculus with delimited continuations

Syntax (| means "or"):

Values $\ni v ::= x \mid \lambda x.e$ Programs $\ni e ::= v \mid e_1 \mid e_2 \mid Sx.e \mid \langle e \rangle$

Evaluation contexts
$$\ni E ::= \Box \mid E \mid e \mid v \mid E$$

where x binds in e, in both $\lambda x.e$ and Sx.e. Evaluation context application and composition:

$$\Box \{e\} = e \qquad \Box \{E'\} = E'$$

$$[E e')\{e\} = E\{e\} e' \qquad (E e')\{E'\} = E\{E'\} e'$$

$$(v E)\{e\} = v E\{e\} \qquad (v E)\{E'\} = v E\{E'\}.$$

Capture-avoiding substitution:

$$\begin{aligned} x[\sigma] &= \sigma(x) \\ (e_1 \ e_2)[\sigma] &= e_1[\sigma] \ e_2[\sigma] \end{aligned}$$

Three types of transitions (between closed programs):

Silent $e \xrightarrow{\tau} e'$: *e* transitions to *e'*. Applicative $e \xrightarrow{v} e'$: applying *v* to *e* leads to *e'*.

reemptive
$$e \xrightarrow{E} e'$$
: e grabs the current context, say E , and then transitions to e' .

$$(\approx \quad \langle E\{e\} \rangle \xrightarrow{\tau} e'.)$$

 $(\approx e v \xrightarrow{\tau} e'.)$

Distinguished by the label type: $\{\tau\}$, value, evaluation context.

Ρ

Enhanced bisimilari

A labelled graph

Defined inductively by transition rules (\approx inductive clauses).

Example and notation	
	$\frac{e_1 \xrightarrow{E\{v \ \Box\}} e_2}{v \ e_1 \xrightarrow{E} e_2}$
means	
• if $e_1 \xrightarrow{E\{v \ \Box\}} e_2$	
• then $v e_1 \xrightarrow{E} e_2$.	

$$\langle E\{\underline{v\ e_1}\}\rangle \xrightarrow{\tau} e_2 \qquad \qquad \text{vs} \qquad \quad \langle E\{v\ \underline{e_1}\}\rangle \xrightarrow{\tau} e_2$$

Definition

Our triple of labelled relations is the smallest satisfying all rules.

Zooming in Quite a few rules $\frac{e_1 \xrightarrow{\tau} e'_1}{e_1 \ e_2 \xrightarrow{\tau} e'_1 \ e_2} \qquad \frac{e_2 \xrightarrow{\tau} e'_2}{v \ e_2 \xrightarrow{\tau} v \ e'_2}$ $e_1 \xrightarrow{v} e_2$ $\overline{e_1 \ v \xrightarrow{\tau} e_2}$ $\lambda x.e \xrightarrow{v} e[x \mapsto v]$ $\frac{e \xrightarrow{\Box} e'}{\langle e \rangle \xrightarrow{\tau} e'}$ $e_1 \xrightarrow{E\{\Box \ e_2\}} e_3$ $\frac{e \xrightarrow{\tau} e'}{\langle e \rangle \xrightarrow{\tau} \langle e' \rangle}$ $e_1 \ e_2 \xrightarrow{E} e_3$ $\langle v \rangle \xrightarrow{\overline{\tau}} v$ $e_1 \xrightarrow{E\{v \ \Box\}} e_2$ $v e_1 \xrightarrow{E} e_2$

$$\mathcal{S}k.e \xrightarrow{E} \langle e[k \mapsto \lambda x. \langle E\{x\} \rangle] \rangle \qquad e \xrightarrow{\tau} e$$

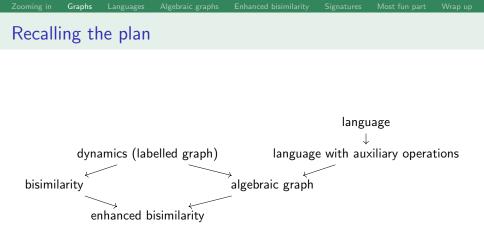
$$\frac{e_1 \xrightarrow{\tau} e_2 \xrightarrow{\alpha} e_3}{e_1 \xrightarrow{\alpha} e_3} \qquad \qquad \frac{e_1 \xrightarrow{\alpha} e_2 \xrightarrow{\tau} e_3}{e_1 \xrightarrow{\alpha} e_3}$$

Congruence of bisimilarity, categorically

A labelled graph

Example: deriving
$$\beta$$

$$\frac{\overline{\lambda x.e \xrightarrow{v} e[x \mapsto v]}}{(\lambda x.e) \ v \xrightarrow{\tau} e[x \mapsto v]}$$



congruence of enhanced bisimilarity

Transition contexts

A transition context $\mathbb{C} = (\mathbb{VT}, \mathbb{ET}, \mathbf{s}, \mathbf{t}, \mathbf{l})$ consists of:

- a category $\mathbb{V}\mathbb{T}$ of vertex types and
- a category ET of edge types,

together with functors

$$\mathbf{s}, \mathbf{t} \colon \mathbb{ET} \to \mathbb{VT}$$
 and \mathbb{I}

$$\mathbf{l} \colon \mathbb{ET} \to \mathbf{Fam}_f(\mathbb{VT}).$$

Concretely

For each edge type $\alpha \in \mathbb{ET}$, we have

- a source vertex type $\mathbf{s}(\alpha)$,
- a target vertex type $\mathbf{t}(\alpha)$, and
- a sequence $(\mathbf{l}_1^{\alpha}, \dots, \mathbf{l}_{n_{\alpha}}^{\alpha})$ of label vertex types.

In λ -calculus with delimited continuations

We define \mathbb{C}_{λ} : Vertex types Take $\mathbb{VT}_{2} = 2 + 1$ for now, i.e., $\mathbf{p} \longrightarrow \mathbf{v}$ С (programs) (values) (contexts) A presheaf $V \in \widetilde{\mathbb{VT}_{\lambda}}$: a map $V(\mathbf{p}) \leftarrow V(\mathbf{v})$ and a set $V(\mathbf{c})$. Edge types Take $\mathbb{ET}_{\lambda} = 3 \cong \{[\tau], [v], [c]\}, \text{ where }$ $\mathbf{s}(\alpha) = \mathbf{t}(\alpha) = \mathbf{p}$ and names indicate corresponding labels: $l[\tau] = ()$ l[v] = (v) l[c] = (c).With suitable notation: $[\alpha]: \mathbf{p} \xrightarrow{\alpha} \mathbf{p}$, for all $\alpha \in \{\tau, \mathbf{v}, \mathbf{c}\}$.

Zooming inGraphsLanguagesAlgebraic graphsEnhanced bisimilaritySignaturesMost fun partWrap upGraphsWe fix a transition context $\mathbb{C} = (\mathbb{VT}, \mathbb{ET}, \mathbf{s}, \mathbf{t}, \mathbf{l}).$

Definition (C-graph)

- a vertex object $V \in \widehat{\mathbb{VT}}$,
- an edge object $E \in \widehat{\mathbb{ET}}$, and
- a border natural transformation $\partial \colon E \to \Delta_{\mathbb{C}}(V)$,

where

$$\Delta_{\mathbb{C}}(V)(\alpha) := V(\mathbf{s}(\alpha)) \times \left(\prod_{i=1}^{n_{\alpha}} V(\mathbf{l}_{i}^{\alpha})\right) \times V(\mathbf{t}(\alpha)).$$

Notation

$$e: v \xrightarrow{\alpha(l_1, \dots, l_{n_\alpha})} v' \text{ for } \partial_\alpha(e) = (v, (l_1, \dots, l_{n_\alpha}), v').$$

In λ -calculus with delimited continuations

Remembering \mathbb{C}_{λ} :

 \mathbb{C}_{λ} -graphs, concretely] • A vertex object $V(\mathbf{p}) \leftarrow V(\mathbf{v})$ $V(\mathbf{c})$, • an edge object $E(\tau)$ $E[\mathbf{v}]$ $E[\mathbf{c}]$ (just three sets), and border maps $\partial_{\tau}: E(\tau) \to V(\mathbf{p}) \times \mathbf{1} \times V(\mathbf{p})$ (no label) $\partial_{[\mathbf{v}]} : E[\mathbf{v}] \to V(\mathbf{p}) \times V(\mathbf{v}) \times V(\mathbf{p})$ (label is a value) $\partial_{[\mathbf{c}]} : E[\mathbf{c}] \to V(\mathbf{p}) \times V(\mathbf{c}) \times V(\mathbf{p})$ (label is a context).

A category of \mathbb{C} -graphs

Trivial proposition

 \mathbb{C} -graphs $\partial : E \to \Delta_{\mathbb{C}}(V)$ are the objects of the comma category \mathbb{C} -Gph := $\widehat{\mathbb{ET}} \downarrow \Delta_{\mathbb{C}}$.

Isomorphic to a presheaf category by Carboni and Johnstone (1995):

- For $v \in \mathbb{VT}$, we get $\mathbf{y}_v \in \mathbb{C}$ -Gph: walking vertex of type v.
- For $\alpha \in \mathbb{ET}$, we get $\mathbf{y}_{\alpha} \in \mathbb{C}$ -Gph: walking edge of type α .
- Border morphisms

 $s_{\alpha} : \mathbf{y}_{\mathbf{s}(\alpha)} \to \mathbf{y}_{\alpha} \qquad t_{\alpha} : \mathbf{y}_{\mathbf{t}(\alpha)} \to \mathbf{y}_{\alpha} \qquad l_{\alpha,i} : \mathbf{y}_{\mathbf{l}_{i}}^{\alpha} \to \mathbf{y}_{\alpha}$

(for all $i \in n_{\alpha}$, *i* omitted whin $n_{\alpha} = 1$). (y means Yoneda.)

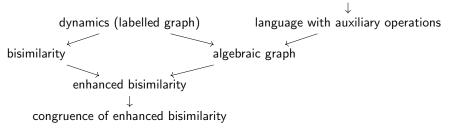
Bisimulation and bisimilarity

Definition

- Given $G = (V, E, \partial)$, a relation $R \hookrightarrow V^2$ is a simulation when,
 - for any transition $e: x \xrightarrow{\alpha(l_1, \dots, l_{n_\alpha})} x'$ such that $x \ R \ y$,
 - there exists a transition f as in

$$\begin{array}{cccc} x & R(\mathbf{s}(\alpha)) & \mathbf{y} \\ e: \alpha(l_1, \dots, l_{n_\alpha}) \middle| & & & \downarrow \\ x' & R(\mathbf{t}(\alpha)) & & \mathbf{y'}. \end{array}$$

- A relation is a bisimulation when it is a simulation and so is its converse.
- Bisimilarity is the largest bisimulation relation.



Obvious categorical notion of grammar

Grammar	=	(finitary) endofunctor F.
Language	=	free monad F^* .

Base category for λ -calculus with delimited continuations

- Naive attempt: endofunctor on $\widehat{\mathbb{VT}_{\lambda}}.$ No variable binding!
- Well-scoped approach: index over potential free (program) variables.
- \rightsquigarrow Consider \mathbb{VT}^+_{λ} such that $\widehat{\mathbb{VT}^+_{\lambda}} \simeq [\mathbf{Set}_f, \widehat{\mathbb{VT}_{\lambda}}] \quad (\mathbb{VT}^+_{\lambda} = \mathbb{F}^{op} \times \mathbb{VT}_{\lambda}).$

\mathbb{VT}^+_{λ} , concretely

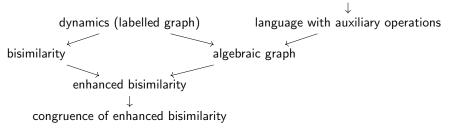
- Objects: \mathbf{p}_n , \mathbf{v}_n , \mathbf{c}_n . For any $V \in \widehat{\mathbb{VT}_{\lambda}^+}$,
 - $V(\mathbf{p}_n)$: set of **programs** with *n* potential free variables.
 - $V(\mathbf{v}_n)$: set of **values** with *n* potential free variables.
 - $V(\mathbf{c}_n)$: set of **contexts** with *n* potential free variables.
- Morphisms: composites of
 - renamings $\mathbf{p}_f : \mathbf{p}_n \to \mathbf{p}_m$, for $f : m \to n$ (similarly with \mathbf{v}, \mathbf{c}), and

•
$$\iota_n \colon \mathbf{p}_n \to \mathbf{v}_n$$
.

Endofunctor for λ -calculus with delimited continuations

Endofunctor Σ_0 on $\widehat{\mathbb{VT}^+_{\lambda}}$: for all $V \in \widehat{\mathbb{VT}^+_{\lambda}}$ and $n \in \mathbb{F}$,

$\Sigma_0(V)(\mathbf{v}_n)$	=	n	+	$V(\mathbf{p}_{n+1})$				
(v	::=	x		$\lambda x.e$)				
$\Sigma_0(V)(\mathbf{p}_n)$	=	$\Sigma_0(V)(\mathbf{v}_n)$	+	$V(\mathbf{p}_n)^2$	+	$V(\mathbf{p}_{n+1})$	+	$V(\mathbf{p}_n)$
(<i>e</i>	::=	v		$e_1 e_2$		Sx.e		$\langle e \rangle$)
$\Sigma_0(V)(\mathbf{c}_n)$	=	1	+	$V(\mathbf{c}_n) \times V(\mathbf{p}_n)$	+	$V(\mathbf{v}_n) \times V(\mathbf{c}_n)$		
(<i>E</i>	::=			E e		v E).		



In order to abstractly account for rules like

Languages

$$\frac{e_1 \xrightarrow{E\{v \ \Box\}} e_2}{v \ e_1 \xrightarrow{E} e_2}$$

need to account for context composition:

$$\Box \{E'\} = E'$$

(v E) {E'} = v E {E'}
(E e') {E'} = E {E'} e'.

Not in the syntax, on the syntax. Status of these auxiliary operations?

Augmented theory:

- reify auxiliary operations as part of the syntax, thus making them explicit (Abadi et al. 1990),
- mod out by recursive equations.

Calling

- Σ the endofunctor for basic syntax,
- Σ' the one for explicit auxiliary operations,

we get monad morphisms

$$\Sigma^* \to (\Sigma + \Sigma')^* \twoheadrightarrow (\Sigma + \Sigma')^*_{/\sim}.$$

Observation

$$\Sigma^*(\emptyset) \cong (\Sigma + \Sigma')^*_{/\sim}(\emptyset)$$

Proof sketch: by the recursive equations, normal forms without explicit operations.

Admissible monad morphism

A $\alpha: S \to S^+$ such that α_{\varnothing} iso.

Here, slightly less general notion.

Starting point: recursive definitions have a distinguished argument.

Example: $(E, E') \mapsto E\{E'\}$

We have $\Sigma'(X) = X^2$, and the definition goes

$$\Box \{E'\} = E'$$

(v E) {E'} = v E {E'}
(E e') {E'} = E {E'} e'.

In general we thus refine: $\Sigma'(X) = \Gamma(X, X)$. In the example: $\Gamma(X, Y) = X \times Y$.



Proposition

By cocontinuity, we have $\Gamma_S(\emptyset) = \emptyset$, so $T(\emptyset) \cong \emptyset$, and hence

 $S(\emptyset) \cong S(T(\emptyset)).$

Otherwise said, for any enhanced syntax (Σ, Γ, δ) :

The initial Σ -algebra possesses a unique compatible Γ -algebra structure (which makes it an initial *ST*-algebra).

I.e.,

The forgetful functor ST-Alg \rightarrow S-Alg creates the initial object.

Enhanced relations

Consider an ST-algebra V.

Definition

Enhanced relation: relation $R \to V^2$ in $\widehat{\mathbb{VT}}$, such that $\Gamma(R, V) \subseteq R$.

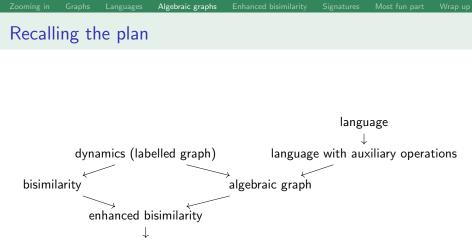
. . .

In λ -calculus with delimited continuations

- Relations R_v , R_p , and R_c on values, programs, and contexts.
- Such that

$$\frac{v R_{\mathbf{v}} v'}{v[\sigma] R_{\mathbf{v}} v'[\sigma]} \qquad \frac{E R_{\mathbf{c}} E'}{E\{e\} R_{\mathbf{c}} E'\{e\}}$$

Typical of applicative bisimilarity.



congruence of enhanced bisimilarity

Let us fix:

- a transition context $\mathbb{C} = (\mathbb{VT}, \mathbb{ET}, \mathbf{s}, \mathbf{t}, \mathbf{l}),$
- an enhanced syntax (Σ, Γ, δ) on $\widehat{\mathbb{VI}}$.

As before, let $S = \Sigma^*$ and $T = \Gamma_S^*$.

Definition

ST-graph:

- a \mathbb{C} -graph $\partial \colon E \to \Delta_{\mathbb{C}}(V)$,
- with *ST*-algebra structure on *V*.

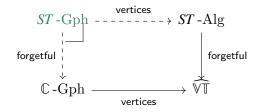
			Algebraic graphs		
Algebr	aic g	raphs			

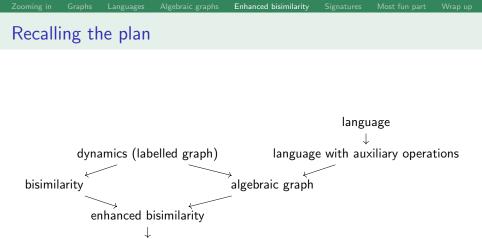
Definition

ST-graph:

- a \mathbb{C} -graph $\partial : E \to \Delta_{\mathbb{C}}(V)$,
- with *ST*-algebra structure on *V*.

A category of ST-graphs:





congruence of enhanced bisimilarity

Enhanced bisimilarity

Let $\partial: E \to \Delta_{\mathbb{C}}(V)$ be any *ST*-graph.

Definition

Enhanced bisimulation:

- enhanced relation on V,
- which is a bisimulation.

Enhanced bisimilarity: largest enhanced bisimulation.

Let us fix a transition context $\mathbb{C}=(\mathbb{VT},\mathbb{ET},s,t,l).$ Notions of

- Syntactic signature: omitted today, generates an enhanced syntax (Σ, Γ, δ) .
- Dynamic signature: described now.

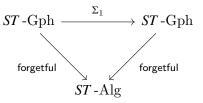
So we assume given

- a transition context $\mathbb{C}=(\mathbb{VT},\mathbb{ET},s,t,l)$ and
- an enhanced syntax $\sigma = (\Sigma, \Gamma, \delta)$ on $\widehat{\mathbb{VT}}$.

Definition

Dynamic signature:

- Finitary endofunctor Σ₁ on *ST*-Gph,
- preserving underlying *ST*-algebra.



For rule

$$\frac{e_1 \xrightarrow{E\{v \ \Box\}} e_2}{v \ e_1 \xrightarrow{E} e_2}$$

we would take

$$\begin{split} \Sigma_{1}(G)[\mathbf{c}] &= \sum_{\substack{e_{1}, e_{2} \\ E \\ v \in V_{G}(\mathbf{v}_{0})}} \sum_{\substack{e \in V_{G}(\mathbf{p}_{0}), \\ v \in V_{G}(\mathbf{v}_{0})}} \{r \in E_{G}[\mathbf{c}] \mid \mathbf{s}(r) = e_{1} \dots \} \\ &= \sum_{\substack{e_{1}, e_{2} \\ E \\ v \in V_{G}(\mathbf{v}_{0})}} \sum_{\substack{e \in V_{G}(\mathbf{p}_{0}), \\ v \in V_{G}(\mathbf{v}_{0})}} \{r : e_{1} \xrightarrow{E_{\{v \square\}}} e_{2} \} \\ &\text{with } \partial(e_{1}, e_{2}, E, v, r) = (v e_{1} , E_{1} , E_{1} , e_{2}) \\ &\in V(\mathbf{s}[\mathbf{c}]) \times V(\mathbf{l}_{1}^{[\mathbf{c}]}) \times V(\mathbf{t}[\mathbf{c}]) \\ &\text{i.e., } V(\mathbf{p}_{0}) \times V(\mathbf{c}_{0}) \times V(\mathbf{p}_{0}) \end{split}$$

Models of a dynamic signature

Definition

 $\begin{array}{l} \mbox{Vertical Σ_1-algebra G: algebra structure leaves vertices untouched.} \\ \sim \mbox{category Σ_1-alg_v}. \end{array}$

Object of interest

```
Initial vertical \Sigma_1-algebra.
```

In examples, syntactic transition system given by operational semantics.

Remark

The canonical initial algebra, i.e., the colimit of

$$\varnothing \to \Sigma_1(\varnothing) \to \ldots \to \Sigma_1^n(\varnothing) \to \ldots$$

may be chosen vertical, in which case it is initial in Σ_1 -alg_v.

Theorem

For any

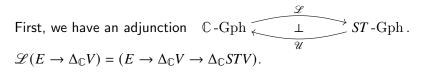
- transition context $\mathbb{C} = (\mathbb{VT}, \mathbb{ET}, \mathbf{s}, \mathbf{l}, \mathbf{t})$,
- syntactic signature d generating enhanced syntax $\sigma = (\Sigma, \Gamma, \delta)$,
- dynamic signature Σ_1 satisfying a cellularity hypothesis, enhanced bisimilarity on the initial vertical Σ_1 -algebra is a congruence.

A taste of cellularity

Exercise The endofunctor for rule $\frac{e_1 \xrightarrow{E\{v \ \Box\}} e_2}{v \ e_1 \xrightarrow{E} e_2}$ is representable. Remembering $\Sigma_1(G)[\mathbf{c}] = \sum_{\substack{e_1, e_2 \\ E \\ \nu \in V_G(\mathbf{v}_0)}} \underbrace{e_1, e_2}_{V_G(\mathbf{c}_0),} \{r \colon e_1 \xrightarrow{E\{\nu \square\}} e_2\}$, we have

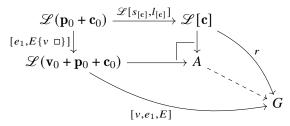
$$\Sigma_1(G)[\mathbf{c}] \cong ST \operatorname{-Gph}(A, G),$$

for some suitable arity A.



A taste of cellularity

We then take A to be the following pushout (ommitting y for readability),



where, calling v, e_1 , and E the generating elements of $\mathbf{v}_0 + \mathbf{p}_0 + \mathbf{c}_0$,

$$\frac{E\{v \Box\} \in ST(\mathbf{v}_{0} + \mathbf{p}_{0} + \mathbf{c}_{0})(\mathbf{c}_{0})}{E\{v \Box\} \in \mathscr{UL}(\mathbf{v}_{0} + \mathbf{p}_{0} + \mathbf{c}_{0})(\mathbf{c}_{0})} (YONEDA)}$$

$$\frac{E\{v \Box\} : \mathbf{c}_{0} \to \mathscr{UL}(\mathbf{v}_{0} + \mathbf{p}_{0} + \mathbf{c}_{0})}{E\{v \Box\} : \mathscr{L}(\mathbf{c}_{0}) \to \mathscr{L}(\mathbf{v}_{0} + \mathbf{p}_{0} + \mathbf{c}_{0})} (ADJUNCTION).$$

				Most fun part	
Cellula	arity				

Arrow-arity of a rule

"Characteristic" morphism: (arity of source + labels) \rightarrow (dynamic arity).

For our example rule:

$$\begin{array}{c} \underline{e_1} \xrightarrow{E\{v \ \Box\}} e_2 \\ \hline v \ e_1 \xrightarrow{E} e_2 \end{array} \xrightarrow{\mathcal{L}\{v \ \Box\}} e_2 \\ \mathcal{L}(\mathbf{v}_0 + \mathbf{c}_0) \xrightarrow{\mathcal{L}[s_{[c]}, l_{[c]}]} \mathcal{L}[\mathbf{c}] \\ \mathcal{L}(\mathbf{v}_0 + \mathbf{c}_0) \xrightarrow{\mathcal{L}[s_{[c]}, l_{[c]}]} \mathcal{L}(\mathbf{c}) \\ \mathcal{L}(\mathbf{v}_0 + \mathbf{c}_0) \xrightarrow{\mathcal{L}[s_{[c]}, l_{[c]}]} \mathcal{L}(\mathbf{v}_0 + \mathbf{c}_0) \xrightarrow{\mathcal{L}[s_{[c]}, l_{[c]}]} \mathcal{L}(\mathbf{v}_0 + \mathbf{c}_0) \\ \mathcal{L}(\mathbf{v}_0 + \mathbf{v}_0 + \mathbf{c}_0) \xrightarrow{\mathcal{L}[s_{[c]}, l_{[c]}]} \mathcal{L}(\mathbf{v}_0 + \mathbf{v}_0 + \mathbf{c}_0) \xrightarrow{\mathcal{L}[s_{[c]}, l_{[c]}]} \mathcal{L}(\mathbf{v}_0 + \mathbf{v}_0 + \mathbf{v}_0) \xrightarrow{\mathcal{L}[s_{[c]}, l_{[c]}]} \mathcal{L}(\mathbf{v}_0 + \mathbf{v}_0 + \mathbf{v}_0 + \mathbf{v}_0) \xrightarrow{\mathcal{L}[s_{[c]}, l_{[c]}]} \mathcal{L}(\mathbf{v}_0 + \mathbf{v}_0 + \mathbf{v}_0) \xrightarrow{\mathcal{L}[s_{[c]}, l_{[c]}]} \mathcal{L}(\mathbf{v}_0 + \mathbf{v}_0 + \mathbf{v}_0) \xrightarrow{\mathcal{L}[s_{[c]}, l_{[c]}]} \mathcal{L}(\mathbf{v}_0 + \mathbf{v}_0 + \mathbf{v}_0) \xrightarrow{\mathcal{L}[s_{[c]}, l_{[c]}]} \xrightarrow{\mathcal{L}[s_{[c]}, l_{[c]}]} \mathcal{L}(\mathbf{v}_0 + \mathbf{v}_0 + \mathbf{v}_0) \xrightarrow{\mathcal{L}[s_{[c]}, l_{[c]}]} \mathcal{L}(\mathbf{v}_0 + \mathbf{v}_0 + \mathbf{v}_0) \xrightarrow{\mathcal{L}[s_{[c]}, l_{[c]}]} \xrightarrow{\mathcal{L}[s_{[c]},$$

Definition

Cellularity: all arrow-arities are cofibrations in the factorisation system generated by all $\mathscr{L}[s_{[c]}, l_{[c]}]$.

In the example: pushout of a generating cofibration.

- Categorical framework for programming languages as (initial) algebraic graphs.
- Generic congruence result for applicative (= enhanced) bisimilarity based on cellularity.

Perspectives:

- Particularly subtle application of Howe's method by Lenglet and Schmitt (2015) still resists our abstraction efforts.
- Other variants of bisimilarity, relevant in the presence of effects.
- Apply same techniques to other areas of programming language theory (e.g., type safety).

