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SPM

Summary for Policymakers

A.1.8   Changes in the land biosphere since 1970 are consistent with global warming: climate zones have shifted poleward in 
both hemispheres, and the growing season has on average lengthened by up to two days per decade since the 1950s 
in the Northern Hemisphere extratropics (high confidence).

  {2.3, TS.2.6} 

Figure SPM.1 | History of global temperature change and causes of recent warming
Panel (a) Changes in global surface temperature reconstructed from paleoclimate archives (solid grey line, years 1–2000) and from direct 
observations (solid black line, 1850–2020), both relative to 1850–1900 and decadally averaged. The vertical bar on the left shows the estimated temperature 
(very likely range) during the warmest multi-century period in at least the last 100,000 years, which occurred around 6500 years ago during the current interglacial 
period (Holocene). The Last Interglacial, around 125,000 years ago, is the next most recent candidate for a period of higher temperature. These past warm periods 
were caused by slow (multi-millennial) orbital variations. The grey shading with white diagonal lines shows the very likely ranges for the temperature reconstructions.
Panel (b) Changes in global surface temperature over the past 170 years (black line) relative to 1850–1900 and annually averaged, compared to 
Coupled Model Intercomparison Project Phase 6 (CMIP6) climate model simulations (see Box SPM.1) of the temperature response to both human and natural 
drivers (brown) and to only natural drivers (solar and volcanic activity, green). Solid coloured lines show the multi-model average, and coloured shades show the 
very likely range of simulations. (See Figure SPM.2 for the assessed contributions to warming). 
{2.3.1; Cross-Chapter Box 2.3; 3.3; TS.2.2; Cross-Section Box TS.1, Figure 1a}

Human influence has warmed the climate at a rate that is unprecedented
in at least the last 2000 years

Changes in global surface temperature relative to 1850–1900
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APPROVED Summary for Policymakers IPCC WGII Sixth Assessment Report 

Subject to Copyedit SPM-16 Total pages: 35 

capacity would occur (medium confidence). Compared to other socioeconomic factors the influence of climate 
on conflict is assessed as relatively weak (high confidence). Along long-term socioeconomic pathways that 
reduce non-climatic drivers, risk of violent conflict would decline (medium confidence). At higher global 
warming levels, impacts of weather and climate extremes, particularly drought, by increasing vulnerability 
will increasingly affect violent intrastate conflict (medium confidence). {7.3, 16.5, CCB MIGRATE, TSB7.4}    
 

 
 

IPCC 6 (2022)

SSP1-1.9 - net zero by 2050

SSP1-2.6 - serious reduction by 2050

SSP2-4.5 - current levels 
maintained till 2050 then fall to 
net zero by 2100

SSP3-7.0 - doubling current 
emissions by 2100

SSP5-8.5 - doubling current 
emissions by 2050
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…and further 
interlinked crises

Desertification

Felton Davis (CC2.0)

Biodiversity loss
https://commons.wikimedia.org/wiki/File:D%C3%A9sertification_des_terres.jpg ￼6



UN Secretary-General António Guterres

"A race we are losing,

but a race we can win..."
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“Still, our appreciation of 
the risks of climate change 

is limited by the way our 
academic institutions 

encourage each researcher 
to focus on their own 

narrow area of expertise.”
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Maximise effectiveness of 
climate science research via...

Machine learning

Mathematics

Software EngineeringComputer Science

Data Science

Programming Languages & systems
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Immediate impact

Reactive


6 months -- 2 years

Cross-cutting 
concerns

2--5 years

Open research 
questions


5--30 years



My work: 

"Tools for the tool makers" for decision making, 
understanding, forecasting, monitoring
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Programming for the planet

• Climate modelling background


• Challenges of scale


• Role of languages and work in progress


1. Static analysis and lightweight verification


2. Categorical abstractions for grids


3. Transparent and explainable computation


• Ideas for the future

￼14



Weather 
Prediction by 

Numerical 
Process 

 
 (L.F.Richardson, 

1922)

Image: Weather 
Forecasting Factory  

Stephen Conlin, 1986.
￼15
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1922

John von Neumann 
(with the stored-program computer at the Institute 
of Advanced Study, Princeton 1945)

Jule Gregory Charney

1945-47

￼16￼16
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1922

1945-47

Thermal Equilibrium of 
the Atmosphere with a 
Given Distribution of 
Relative Humidity

1967-69

“According to our 
estimate, a 

doubling of the 
CO2 content in the 

atmosphere has the 
effect of raising the 
temperature of the 
atmosphere by 2C”

(Manabe & Wetherald)

First “coupled” model


Climate calculations with 
a combined ocean-
atmosphere model


(Manabe & Bryan)

“milestone in scientific 
computing”


(Nature 2006)
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Modern GCMs (Global Circulation Models)

Focus Article wires.wiley.com/climatechange

one-dimensionally, by latitude bands or ‘zones’ (as
in Arrhenius’ 1896 model). EBMs can also be two-
dimensional, with both zonal and longitudinal or
‘meridional’ energy flows. A second type of mathemat-
ical climate model, the radiative–convective model,
focuses on vertical transfers of energy in the atmo-
sphere. Such models typically simulate the atmo-
sphere’s temperature profile in either one dimension
(vertical) or two (vertical and meridional). When
Callendar revived the carbon dioxide theory of cli-
mate change in 1938 (following new, more sensitive
measurements that disproved Ångström’s argument),
he used a one-dimensional radiative model that
divided the atmosphere into twelve vertical layers.22 A
third type is the two-dimensional statistical–dynami-
cal model, employed primarily to study the circulatory
cells; in these models the dimensions are vertical and
meridional.23,24

These three categories of models play key roles in
climate science.25 The simplest of them can be worked
out by hand. As their complexity increases, however,
it becomes increasingly difficult to solve the systems
of equations involved without a computer.

GENERAL CIRCULATION MODELS
In the early 20th century Vilhelm Bjerknes showed
how to compute large-scale weather dynamics using
what are now known as the ‘primitive equations’
of motion and state.26,27 These equations include
Newton’s laws of motion, the hydrodynamic state

equation, mass conservation, and the thermodynamic
energy equation. Bjerknes’s mathematical model
described how mass, momentum, energy, and mois-
ture are conserved in interactions among individual
parcels of air. However, Bjerknes’ equations did not
have closed-form solutions, and numerical techniques
capable of approximate solutions did not yet exist.

During World War I, Richardson developed
a numerical forecasting method based on Bjerknes’
equations, using a finite-difference grid.9,28 Due to
an error in the input observations, Richardson’s only
test of the method led to a surface pressure pre-
diction 150 times larger than the actual observed
change. Further, his methods were not sophisticated
enough to keep numerical instabilities from building
up as he iterated the calculations. These problems led
meteorologists to abandon numerical modeling for
the next two decades.29 Better mathematical methods
for minimizing numerical instabilities in massively
iterative calculations emerged only after the advent of
digital computers, becoming a central preoccupation
of weather and climate modeling from the 1940s into
the present.

Immediately after World War II, weather pre-
diction was among the first major applications of
digital computers, heavily supported by both military
agencies and civilian weather services.30 Early exper-
iments with computerized numerical weather predic-
tion (NWP) followed Richardson’s lead in employing
Cartesian grids (Figure 2) and finite-difference meth-
ods, computing vertical and horizontal mass and

Horizontal grid
Latitude - longitude

Vertical grid

Physical processes in a model

Height or pressure

Atmosphere Solar
radiation

Terrestrial
radiation

Advection

Sea ice
WaterHeat

Advection

Momentum

Mixed layer ocean

Snow

Continent

Vertical
exchange
between
layers

Horizontal
exchange
between
columns

FIGURE 2 | Schematic representation of the Cartesian grid structure used in finite-difference GCMs. Graphic by Courtney Ritz and Trevor Burnham.

130  2010 John Wi ley & Sons, L td. Volume 2, January/February 2011

Edwards (2011)
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Increasing resolution over IPCC models (1990,1995,2001,2007)

graphics from 4th IPCC report (2007) ￼19



Figure 1.19 in IPCC, 2021: Chapter 1. In: Climate Change 
2021: The Physical Science Basis. Contribution of Working 

Group I to the Sixth Assessment Report of the 
Intergovernmental Panel on Climate Change [Chen, et al.]

AR6 - Model resolutions

￼20



Hillman et al. 2020

Uncertainty / error  vs.  expense

NASA / Wikimedia Commons

Approximating sub grid processes

￼21



Behavioural specification via conservation law
δϕ
δt

= D(ϕ) + P(ϕ) + U(ϕ) + F
￼  - time

￼  - time-varying (“prognostic”) variables in 3D (state vector)


e.g. temperature, pressure, wind-speed, humidity, etc.


￼  - (resolved) dynamics

based on PDEs of fluid motion 

￼  - physics (& chemistry) 
e.g., radiative transfer, convection, (bio-)geochemistry 

￼  - unresolved processes (subgrid models) 
e.g., eddies, clouds, other waves 

￼  - forcings (external factors, not simulated) 
e.g. solar radiation (insolation), anthropogenic emissions, geothermal heating

t
ϕ

D

P

U

F

General form
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The software architecture of climate models: a graphical comparison of CMIP5 and EMICAR5 configurations

Naughten (née Alexander) and Easterbrook (2015)

*intermediate 
complexity model

O(1Msloc)
￼23



More

processes

Fewer

processes

Low

resolution


300km

Higher

resolution


1-5km

Mid

25-100km 

(typical GCM)

Better prediction: “climbing the ladder” (Charney)

Computation

Collaboration

Communication

1k resolution 

All major processes 
 

Continuous data 
 assimilation


Multi-scale prediction


Uncertainty 
quantification


Risk assessment

￼24



Scaling computation
The challenge of increasing resolution

Δx′￼ =
Δx
2

Doubling horizontal resolution means…

￼ grid points (in horizontal, since ￼ )⟹ 4 × Δx = Δy

￼ time steps at least (￼ )⟹ 2 × Δt′￼ ≤
Δx′￼

𝗆𝖺𝗑𝗉𝗋𝗈𝗉x
=

Δt
2

￼ more computation!⟹ 8 ×
That’s even before we consider the vertical…

(see Courant-Friedrichs-Lewy condition)

Further challenges of scenario testing, uncertainty estimation, short-term forecasting

￼25
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Figure 3. Dennard scaling tails off at the end of four decades of microprocessor miniaturization. From 42 Years of

Microprocessor Trend Data, courtesy Karl Rupp.

obtain in establishing a model’s predictive skill by running a suite of retrospective hindcasts.
Furthermore, the model studied in [47] has vastly less complexity (defined in [49] as the number
of distinct physical variables simulated by a model) than a typical workhorse model. It is clear
that the additional of detail, in resolution and complexity, to models cannot continue as before. A
fundamental rethinking of the decades-long climb up the Charney ladder is long overdue.

Just around the time the state of play in climate computing was reviewed in [38], the contours
of the revival of machine learning (ML) using artificial neural networks (ANNs) were beginning
to take shape. Deep learning (DL) using multiple neuronal layers were showing significant skill
in many domains. As noted in Section 1, ANNs existed alongside the physics-based models of
von Neumann and Charney for decades, but may have languished as the computing power and
parallelism were not available. The new processors emerging at the right of Fig. 3 in the twilight
of Dennard scaling, are ideally suited to ML: the typical DL computation consists of dense linear
algebra, scalable almost at will, able to reduce memory bandwidth at reduced precision without
loss of performance. Processors such as the Graphical Processing Unit (GPU) and most especially
the TPU (tensor processing unit) showed themselves capable of running a typical DL workload
at close to the theoretical maximum performance of the chip [50]. There are many challenges to
executing conventional equation-based arithmetic on these chips, not least of which is their low
precision, often as low as 3 digits, the same as for the manual arithmetic that limited Bjerknes,
see Section 2. While continuing to explore low-precision arithmetic (e.g [51]), we have begun to
explore ML itself in the arsenal of Earth system modeling. We turn now in Section 4 to an assess
the potential of ML to show us a way out of the current computing impasse.

4. Learning physics from data
The articles in this special issue form a wide spectrum representing the state of the art in the use
of ML in Earth system science, and we do not propose to offer a broad or comprehensive review.

Scaling computation

￼26

Are general circulation 
models obsolete? (Balaji et 

al. 2022)



Recent approach: Data-driven (machine learning) subgrid models

Train on real data

or high-resolution model

ANN or CNN model Explainability?

Generalisability?

Integration into GCM?

￼27



Scaling collaboration

Deploy and train in  software engineering tools & techniques

Version control

& public curators

Build systems

& containersProcesses

Testing and verificationDebugging Profiling
￼28



Society of Research Software Engineers

Structural and cultural/sociological change happening

￼29



Models in the past...

F = G
m1m2

r2

Isaac Newton Robert Hooke
= maths! (equations in )ℝ

Models now...
= code (and lots of it)

Scaling communication

￼30
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Both hinder scientific progress, only one is necessary

Inherent Accidental

Inadequately supported Too easy to introduce

Scaling communication- Handling the Two Complexities

￼31



Solution strategy
ϕt

x =
ϕt−1

x +
αΔt
Δx2

(ϕt−1
x+1 + 2ϕt−1

x + ϕt−1
x−1)

Prediction calculation
1 tend = ... % end time
2 xmax = ... % length of material
3 dt = ... % time resolution
4 dx = ... % space resolution
5 alpha = ... % diffusion coefficient
6 nt = tend/dt % # of time steps
7 nx = xmax/dx % # of space steps
8 r = alpha*dt/dx^2 % constant in solution
9

10 real h(0,nx), % heat fun. (discretised
11 h_old(0, nx); % in space) at t and t-1
12

13 do t = 0, nt
14 h_old = h
15 do x = 1, nx - 1
16 h(i) = h_old(i) + r*(h_old(i-1))
17 - 2*h_old(i) + h_old(i+1)
18 end do
19 end do

Abstract model

∂ϕ
∂t

= α
∂2ϕ
∂x2

Example 1D heat equation
Scaling communication - Loss of abstract meaning

￼32



papers
programs

???

Solution strategy Prediction calculationAbstract model

Gap in explanation….
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papers
programs

???

Partial solutions

‣ Extra technical documentation

‣ Clear systems design

‣ High modularity

Open problem: separating concerns and 
relating abstractions

Solution strategy Prediction calculationAbstract model

￼34

Could there be better support via a programming 
language tailored to science?



Current dominant 
languages

Are we done?

“I don't know what the language of the year 
2000 will look like, but I know it will be 
called Fortran.'' — Sir Tony Hoare (1982)

•Fortran’s evolution shows power of 
expressivity gains 


•But making new languages hard

•Recent breakout success:  Julia

•Big bet/opportunity for future climate 

modelling?



1. Static analysis and lightweight verification

Role of languages and tools and work in progress

Testing difficult, and verification tools not readily deployable



Did we implement the right equations?
Validation

Challenge
Telling these two apart when results are not as expected

Verification
vs

Did we implement the equations right?



natural & physical sciences

computer science

yes 
pls!

verification?

￼38



natural & physical sciences

computer science

∀x.∃y.P(x)
→Q(y) yes 

pls!

￼39



natural & physical sciences

computer science Let’s bridge the chasm!

???

∀x.∃y.P(x)
→Q(y)

￼40



Lightweight verification tools for science

1   program energy

2     != unit kg :: mass

3     != unit m  :: height

4     real :: mass = 3.00, gravity = 9.91, height = 4.20

5     != unit kg m**2/s**2 :: potential_energy

6     real :: potential_energy

7   

8     potential_energy = mass * gravity * height 

9   end program energy

energy1.f90: Consistent. 4 variables checked.

$ camfort units-check energy1.f90

CamCamFortFort

https://camfort.github.io/ ￼41

+ Static analysis 
checks



2. Categorical abstraction for grids

Code often over-commits to implementation 
(see accidental complexity) 
What abstractions can avoid this?

Role of languages and tools and work in progress



Fundamental dynamics (Navier-Stokes equations)

Conservation of momentum + mass for viscous fluid

f

f†

Discrete approximation 
of PDE solution via 
stencil computations

￼43



A quantitative analysis of array usage in scientific code

Verifying Spatial Properties of Array Computations 75:5

Table 1. Summary of so�ware packages used for evaluation

Number of �les Physical lines of code Lines of raw code
Package Total Parsed Total Parsed Total Parsed
UM 2,540 2,272 635,525 543,000 1,010,936 868,761
E3ME 167 155 44,935 40,347 73,545 63,185
Hybrid4 29 29 4,831 4,831 8,361 8,361
GEOS-Chem 604 340 449,222 275,389 856,463 420,850
Navier 6 6 505 505 696 696
CP 52 48 2,334 2,121 3,978 3,632
BLAS 151 149 16,046 15,993 40,882 40,679
ARPACK-NG 312 290 50,208 47,453 144,081 139,290
SPECFEM3D 555 477 137,468 103,381 232,356 178,813
MUDPACK 88 88 54,753 54,753 78,652 78,652
Cli�s 30 30 2,424 2,424 3,149 3,149
Total 4,534 3,884 1,398,251 1,090,197 2,453,099 1,806,068

(1) The Uni�ed Model (UM) developed by the UK Met O�ce for weather modelling [Wilson
and Ballard 1999] (version 10.4);

(2) E3ME, a mixed economic/energy impact predication model [Barker et al. 2006];
(3) Hybrid4, a global scale ecosystem model [Friend and White 2000];
(4) GEOS-Chem, troposhperic chemistry model [Bey et al. 2001];
(5) Navier, a small-size Navier-Stokes �uid model [Griebel et al. 1997];
(6) Computational Physics (CP), programs from a popular textbook, Introduction to Computa-

tional Physics [Pang 1999];
(7) BLAS, a common linear-algebra library used in modelling [Blackford et al. 2002];
(8) ARPACK-NG, an open-source library for solving eigenvalue problems [Sorenson et al. 2017];
(9) SPECFEM3D, global seismic wave models [Komatitsch et al. 2016];
(10) MUDPACK, a general multi-grid solver for elliptical partial di�erentials [Adams 1991];
(11) Cli�s, a tsunami model [Tolkova 2014].

These cover approximately 1.4 million physical lines of Fortran code (2.4 million including com-
ments and white space). The UM and GEOS-Chem packages are the largest at ⇡635kloc and
⇡450kloc respectively. Table 1 provides further detail on these packages and their sizes. We used
Wheeler’s SLOCCount to get a count of the physical source lines (excluding comments and blank
lines) [Wheeler 2001]. A third of the packages come from active research teams who are our project
partners (i.e., they were not selected carefully to �t our hypotheses).

Analysis tool. We built a code analysis tool based on CamFort, an open-source Fortran anal-
yser [Contrastin et al. 2017]. Fortran source �les are parsed to an AST and standard control-�ow
and data-�ow analyses are computed, including some of key importance for us: induction variable
identi�cation and reaching de�nitions. The resulting AST is traversed top-down and assignment
statements inside loops are analysed and classi�ed. CamFort implements standards compliant
parsers, and so we were not able to parse all of the corpus as some packages contain non-standard
code. Of the 1.4 million lines, just under 1.1 million physical lines of code were parsed.

Our analysis classi�es assignment statements as array computations if they are contained within
a loop and their right-hand side has relative array subscripts, i.e. their indices use induction variables.
Assignments are classi�ed based on all the expressions that may2 �ow to their right-hand side. For

2We use a “may” analysis, in the sense that it takes the union of information from merging data�ow paths.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 75. Publication date: October 2017.

climate
climate/economics
bio/climate
chem/climate
fluids
physics
library
library
geodynamics

seismology
library

~2.5 million physical loc (Fortran 77/90)

• Array computations are common in science (133k)


• Majority are stencils  (55.86% of array comps.)

Verifying spatial 
properties of array 

computations  
(Orchard et al. 2017)

￼44



a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

a
a
a
a

δA : DA → DDA
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Ypnos: declarative, parallel structured grid programming (Orchard et al. 2010)

A Categorical Outlook on Cellular Automata (Capobianco, Uustalu, 2010) ￼45

Stencil computations on arrays are comonadic
DA = 𝖠𝗋𝗋𝖺𝗒 I A × I

array-data ￼  cursor×
Pointed array comonad



f

Local computation 
(neighbourhood)

f†

Global computation

DA f B

DA δA DDA Df DB
f† = Df ∘ δ

Ypnos: declarative, parallel structured grid programming (Orchard et al. 2010)

A Categorical Outlook on Cellular Automata (Capobianco, Uustalu, 2010) ￼46

DA = 𝖠𝗋𝗋𝖺𝗒 I A × I
array-data ￼  cursor×

Pointed array comonad



DA = 𝖨𝖠𝗋𝗋𝖺𝗒 I A × 𝖬𝖠𝗋𝗋𝖺𝗒 I A × I
read-array-data ￼  write-array-data ￼  cursor× ×

DA f A

DA f †
DA

read from IArrray;  
write to MArray; 

then swap

Double-buffering array "comonad"

General idea: hide optimisations behind 
abstract interface (e.g., mutation, stencil tiling)

￼47



Spatial data structures (quad trees, adaptive mesh)

SA = 𝖳𝗋𝖾𝖾 (Array A)

SA view DA f B

SA f †
SB

General idea: hide representation via comonad morphism (view)
￼48

Stencil computation 
on flat view



Categorical abstraction for grids
• Comonads for stencil computations

• Comonad morphisms to map between grid representations


• Distributive law with monad for filter and reduction

https://github.com/SpeedyWeather/SpeedyWeather.jl

cf. multi-grid configurations in SpeedyWeather.jl
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filter : D(A + 1) → (DA) + 1
reduce : D(A × M) → (DA) × M



3. Transparent and explainable computation

Role of languages and tools and work in progress



Fluid: A Transparent Programming Language

Research goal

Data-driven artefacts able 
to reveal relationship to 
underlying data

related input selected output

demand analysis

source code 

￼  (sufficient-for)▹

￼  (demands)◃

datasets 

Methodology

what can I do with these resources?

Adjoint operators￼ and De Morgan◃ ⊣ ▹
duals    exposing fine-grained I/O 
relationships

▶ ⊣ ◀

what do I need for this output?

Research papers and news 
articles are opaque — hard to 
critique, understand or trust

Problem

Research prototype at http://f.luid.org

Roly Perera Joe Bond 
(Bristol)
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http://f.luid.org


Programming languages for climate modelling through 2030-50?

• Science oriented (cf. Julia)

• Array oriented (cf. Fortran, Matlab, Julia, numpy, xarray, xgcm)

• Fast and predictable performance (cf. Fortran)

• Machine-learning integrated (cf. Python, PyTorch, pyro)

• Interactive (cf. REPLs and Notebooks)

• Heterogeneous compilation (CPUs, GPUs, NPUs, parallel arch.)


• Low-commitment to implementation details

• Lightweight verification (various typing approaches)

• Explainable and transparent

• Integration with program synthesis tooling 
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Data (a lot of it...) A Case for Planetary Computing
Amelia Holcomb, Michael Dales, Patrick Ferris, Sadiq Ja�er,

Thomas Swin�eld, Alison Eyres, Andrew Balmford,
David Coomes, Srinivasan Keshav, Anil Madhavapeddy

Departments of Computer Science & Technology, Plant Sciences and Zoology, University of Cambridge

Abstract
We make a case for planetary computing: accessible, inter-
operable and extensible end-to-end systems infrastructure
to process petabytes of global remote-sensing data for the
scienti�c analysis of environmental action. We discuss some
pressing scienti�c scenarios, survey existing solutions and
�nd them incomplete, and present directions for systems
research to help reverse the climate and biodiversity crises.

1 INTRODUCTION
There are simultaneous crises across the planet due to ris-
ing CO2 emissions [60], rapid biodiversity loss [59], and
deserti�cation [42]. Assessing progress on these complex
and interlocked issues requires a global view on the e�ec-
tiveness of our adaptations and mitigations. To succeed in
the coming decades, we need a wealth of new data about
our natural environment that we rapidly process into accu-
rate indicators, with su�cient trust in the resulting insights
to make decisions that a�ect the lives of billions of people
worldwide.

The scale of the problem demands that we shift beyond
depending solely on governmental policies. Tackling the cli-
mate and biodiversity emergencies now involves ecologists,
climate scientists, executives, journalists, and politicians —
all assessing the current environmental state of the world
and predicting the impact of changes. They aim to provide
information to both policy makers and the public about as-
sessment of ongoing conservation interventions.
A global view on planetary health is possible due to the

availability of remote sensing data from satellites in orbit [33],
drones �ying over natural habitats [57], and networks of
ground-based measurement equipment [30]. However, the
systems required to e�ectively ingest, clean, collate, process,
explore, archive, and derive policy decisions from the raw
data are presently not usable by non-CS-experts, not reliable
enough for scienti�c and political decision making, and not
widely and openly available to all interested parties. As the
climate crisis deepens, the feedback loop between environ-
mental hypotheses and resulting policy action is happening
faster than ever, which makes it ripe for abuse from bad ac-
tors who derive misleading interpretations of observations.

We believe that computer systems have a vital role to play
in not only powering the processing and understanding of

planetary data, but also building public trust in the result-
ing policy actions by enforcing standards of transparency,
reproducibility, accountability and timeliness in the decision
making. We �rst motivate this with scenarios we have gath-
ered from scientists working on environmental science (§1.1)
and distill some common requirements (§1.2). We �nd that
existing solutions only partially solve the systems problems
(§2), and so discuss directions towards a planetary comput-
ing platform that can be used non-CS-expert users (§3). Our
aim is to grow a federated ecosystem that will span individ-
ual organisations, and also be survivable beyond any one
entity controlling it in the longer term, and be sensitive to
the necessity of access control from malicious actors (§4).

1.1 Motivating Environmental Scenarios
Calculating Extinction Rates. Ecologists assess areas of

habitat data to generate worldwide extinction statistics [28],
but must not reveal individual observation points or else
species may come under threat from poachers [45]. To gen-
erate this aggregate data they combine satellite data (Land-
sat, MODIS, Copernicus, GEDI [33]) with readings collected
manually over decades. The data is highly variable in quality
and requires cleaning and normalisation, before machine
learning is used to train models to interpolate missing data.
Subsequently, the information gleaned from the data is used
to direct habitat regeneration and protection e�orts, but
must be regenerated monthly as new data arrives. When
challenged, it should be possible to reveal the provenance of
conclusions to auditors, even from decades-old observations.

Land use policy. Food and �bre production trades o� against
natural habitats, and understanding where to do this requires
jurisdictional land management [25]. A civil servant assess-
ing di�erent methods of evaluating the impact of land use
changes on biodiversity needs to access datasets for their
country that have a reasonable resolution (<100 metres/pixel
and so 100GB/layer storage needed), across all the species on
the IUCN extinction list (10000+ entries [39]), and go back
30 years. Similarly, natural resource managers rely on being
able to work on zoomed-out/cropped data for interactive and
iterative exploration of potential land use policies, and then
scale to cluster compute levels for a country-wide run.
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See Anil Madhavapeddy's 
ICFP 2023 keynote
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Lookout for….
PROPL - Workshop on Programming for the Planet

At POPL 2024

20-21st January

In London

https://popl24.sigplan.org/home/propl-2024
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Lookout for….
Hiring a 3-year postdoc soon

￼55
https://plas4sci.github.io/



“Any actor should understand their points of 
leverage[…] We each have to understand the 

opportunities presented by our place in the 
system and do our best to exploit them.”

“Still, our appreciation of the risks of climate 
change is limited by the way our academic 

institutions encourage each researcher to 
focus on their own narrow area of expertise.”


https://iccs.cam.ac.uk

@Cambridge_ICCS

Thanks


