# Higher Topos Theory and Goodwillie Calculus (Part 1)

André Joyal

UQÀM

Topos Institute Colloquium (14/12/2023)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Joint work with

- Mathieu Anel
- Georg Biedermann

(ロ)、(型)、(E)、(E)、 E) の(()

Eric Finster

# A very brief history

Modern mathematics essentially began with Cantor's set theory. The conceptual fabric of modern mathematics is presently moving:

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

- 1. Set theory
- 2. Formal logic
- 3. Category theory
- 4. Topos theory
- 5. Categorical logic
- 6. Abstract Homotopy theory
- 7. Higher category theory
- 8. Higher topos theory
- 9. Homotopy type theory
- 10. Brave new mathematics?

#### Brave new mathematics

David Hilbert:

"From the paradise, that Cantor created for us, no-one shall be able to expel us!"

Norman Steenrod:

"It is the most trivial paper I ever read, and it has the greatest influence on my work!".

John Greenlees:

"The phrase 'brave new rings' was coined by Friedhelm Waldhausen, presumably to capture both an optimism about the possibilities of generalizing rings to ring spectra, and a proper awareness of the risk that the new step in abstraction would take the subject dangerously far from its justification in examples."

### Simplicial sets

#### The category $\Delta$

 $Ob(\Delta) := \{[n] = \{0, \dots, n\} | n \ge 0\}$ 

Hom([m], [n]) is the set of order preserving maps  $[m] \rightarrow [n]$ . A *simplicial set* is a presheaf  $A : \Delta^{op} \rightarrow Set$ . Notation:  $A_n = A([n])$ .

$$sSet := Fun(\Delta^{op}, Set)$$

Example:  $\Delta[n] = Hom(-, [n])$ 

#### The geometric realisation

The realisation functor  $R: \Delta \rightarrow \mathsf{Top}$  is defined by letting

$$R[n] := \{ (x_1, \dots, x_n) \in [0, 1]^n_{\mathbb{R}} \mid x_1 \le \dots \le x_n \}$$

The "singular complex" of a topological space X is then defined by

$$S(X)_n := \operatorname{Top}(R[n], X)$$

The functor  $S := R^*$ : Top  $\rightarrow$  sSet has a left adjoint  $R_!$ : sSet  $\rightarrow$  Top called the *geometric realisation functor*. By construction,

$$R_!(A) = \int^{[n] \in \Delta} A_n \times R([n])$$

#### On Kan complexes

Recall that the fundamental simplex  $\Delta[n] \in Set$  is the presheaf  $Hom(-, [n]) : \Delta^{op} \to Set$ . The simplex  $\Delta[n]$  has faces  $\partial_i \Delta[n] \subset \Delta[n]$   $(0 \le i \le n)$ .



and a boundary

 $\partial \Delta[n] = \bigcup_{i=0}^n \partial_i \Delta[n]$ 

## On Kan complexes

Recall that the *horn*  $\Lambda^k[n] \subset \Delta[n]$   $(0 \le k \le n)$  is defined by putting

$$\Lambda^k[n] = \bigcup_{i \neq k} \partial_i \Delta[n]$$

For example,  $\Lambda^1[2]$  is



▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

## Kan complexes

Definition

A simplicial set  $X \in \Delta Set$  is called a *Kan complex* if every horn  $h : \Lambda^k[n] \to X$  has a filler  $h' : \Delta[n] \to X$ .



#### Theorem

[Quillen] The category of simplicial set sSet admits a cartesian closed Quillen model structure in which the cofibrations are the monomorphisms and the fibrant objects are the Kan complexes.

We shall say that a Kan complex is a *space*.

## The fundamental category

A variation on geometric realisation.

The *nerve* N(C) of a category C is defined by letting

$$N(C)_n := i^*(C)_n = Fun(i[n], C)$$

where  $i : \Delta \subset Cat$  is the inclusion functor.

The functor  $N := i^* : Cat \rightarrow sSet$  has a left adjoint  $\tau_1 : sSet \rightarrow Cat$  called the *fundamental category functor*. By construction,

$$\tau_1(A) = \int^{[n] \in \Delta} A_n \times i([n])$$

The fundamental groupoid of A is the groupoid reflection of  $\tau_1(A)$ .

# On quasi-categories [BV]

We say that a horn  $\Lambda^k[n] \subset \Delta[n]$  is inner if 0 < k < n.

The following notion was introduced by Boardman and Vogt without a name (it is often called a *weak Kan complex*).

#### Definition

[BV] A simplicial set X is called a *quasi-category* if every inner horn  $h : \Lambda^k[n] \to X$  has a filler  $h' : \Delta[n] \to X$ .

$$\begin{array}{c} \Lambda^{k}[n] \xrightarrow{h} X \\ \downarrow & \downarrow^{\prime} \\ \Delta[n] \end{array}$$

Every Kan complex is a quasi-category.

The nerve N(C) of a small category C is a quasi-category.

Boardman and Vogt introduces the homotopy category ho(X) of a quasi-category X. It happens that  $ho(X) = \tau_1 X$ .

#### Lemma

[J] A quasi-category X is a Kan complex if and only if its homotopy category ho(X) is a groupoid.

## On quasi-categories

#### Theorem

[J] The category of simplicial set sSet admits a cartesian closed Quillen model structure in which the cofibrations are the monomorphisms and the fibrant objects are the quasi-categories.

If X is a quasi-category, then so is the simplicial set  $X^A$  for any simplicial set A.

If X is a quasi-category, then a vertex  $a \in X_0$  is said to be an *object* of X and an arrow  $f \in X_1$  is said to be a *morphism*  $f : d^1(f) \to d^0(f)$ .

### The hom spaces of a quasi-category

If X is a quasi-category, then so is the simplicial set  $X^{[1]} := X^{\Delta[1]}$ . The *hom space* X(a, b) between two objects  $a, b \in X_0$  is defined by the following pullback square (of simplicial sets)

The simplicial set X(a, b) is a Kan complex (it is a "space")

## Composition in a quasi-category

If X is a quasi-category, then so is the simplicial set  $X^{[2]} := X^{\Delta[2]}$ . The generalised *hom space* X(a, b, c) for three objects  $a, b, c \in X_0$  is defined by the following pullback square (of simplicial sets)

The projection  $(d^2, d^0)$ :  $X(a, b, c) \rightarrow X(a, b) \times X(b, c)$  has a section  $s: X(a, b) \times X(b, c) \rightarrow X(a, b, c)$ .

The composition operation

$$\mu := d^2s : X(a,b) imes X(b,c) o X(a,c)$$

is well defined up to homotopy.

A quasi-category X is said to be 1-*truncated* if the hom space X(a, b) is 0-truncated for every  $a, b \in X_0$ .

A quasi-category X is equivalent to a category if and only if it is 1-truncated if and only if the canonical map  $X \to ho(X)$  is an equivalence of quasi-categories.

Ordinary category theory is the theory of *1-truncated* quasi-categories.

Brave new category theory

The initial theory [J]:

- Functors and natural transformations;
- The opposite quasi-category;
- Left and right fibrations;
- ► The slice X/a and the coslice a\X of a quasi-category X by an object a ∈ X.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

- Initial and terminal objects;
- Diagrams, limits and colimits;
- Localizations;
- Yoneda lemma (first version);
- Adjoint functors (first version).

## The quasi-category of spaces ${\cal S}$

A quasi-category X is a Kan complex, if every arrow in X is invertible, in which case we shall say that X is a *homotopy type*, or a *space*.

The quasi-category of spaces S was constructed by Lurie in [HTT]. The quasi-category S is large but locally small. It is cocomplete and freely generated by its terminal object  $1 \in S$ .

The coslice  $1 \setminus S$  is the quasi-category of pointed spaces  $S_{\bullet}$ .

It was proved later by Cisinski [C] that the projection  $p : S_{\bullet} \to S$  is a universal left fibration: for any left fibration  $f : X \to A$  there exists a (homotopy) pullback square



and the pair of maps  $(c, c_{\bullet})$  is homotopy unique.

#### The twisted category of arrows

The twisted category of arrows T(C) of a category C is the category of elements of the functor  $Hom : C^{op} \times C \rightarrow Set$ .

A chain  $[n] \to T(C)$  is a functor  $[n]^{op} \star [n] \to C$ .



T(X) can be defined for any simplicial set X.

By definition  $T(X)_n = X([n]^{op} \star [n]) = X_{2n+1}$ .

The simplicial set T(X) is a quasi-category when X is a quasi-category.

## The Yoneda map

If X is a quasi-category, then the canonical map

 $(s,t): T(X) \rightarrow X^{op} \times X$ 

is a left fibration.

It has a classifying map  $\mathit{hom}: X^{\mathit{op}} \times X \to \mathcal{S}$ 



From the map  $hom: X^{op} \times X \to S$  we obtain the Yoneda map

$$y: X \to \mathcal{S}^{X^{op}}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

## Remark on pushouts and pullbacks

In category theory, the notions of pushout and of pullback squares depend on the ambiant category. This is also true in the theory of quasi-categories.

Pushouts and pullbacks in S are homotopy pushouts and pullbacks.

For example, the square on the left is a pushout in the category of sets Set



while the square on the right is a pushout in the quasi-category of spaces S (where  $S^1$  is the homotopy type of the circle). The square on the left is obtained by applying the functor  $\pi_0$  to the square in the right.

# Lurie's contributions [HTT] and [HA]

Lurie's terminology: quasi-category  $\rightarrow \infty$ -category.

- Cartesian fibrations;
- The  $\infty$ -category of spaces S;
- Yoneda lemma (second version);
- The  $(\infty, 2)$ -category of small  $\infty$ -categories;
- Left and right Kan extensions;
- ▶ Presentable ∞-categories;
- ▶ ∞-topoi;
- ► Stable ∞-categories;
- $\blacktriangleright$  ∞-operads;
- Monads, monadic functors;
- Monoidal  $\infty$ -categories,  $\mathbb{E}_n$ -categories.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

## On large and small $\infty$ -categories

The  $\infty\text{-category}$  of spaces  ${\mathcal S}$  is large and locally small.

The  $\infty\text{-category}$  of small  $\infty\text{-categories}\ \mathsf{Cat}_\infty$  is large and locally small.

The  $\infty\text{-category}$  of large  $\infty\text{-categories}$   $CAT_\infty$  is very large and not locally small.

The  $\infty$ -category of finite spaces Fin is small.

(Lurie) If A is a small  $\infty$ -category, then the  $\infty$ -category  $S^{A^{op}}$  is cocomplete and freely generated by the Yoneda map  $y : A \to S^{A^{op}}$ . More precisely, for every cocomplete  $\infty$ -category C and every functor  $f : A \to C$  there exists a unique cocontinuous functor  $L(f) : S^{A^{op}} \to C$  such that the following triangle commutes:



#### Rezk descent principle

The  $\infty$ -category S has a very surprising property which was discovered by Charles Rezk [Rez2].

Consider the contravariant functor  $Slice : S^{op} \to CAT_{\infty}$  which takes an object  $A \in S$  to the  $\infty$ -category S/A and which takes a map  $f : A \to B$  to the base change functor  $f^* : S/B \to S/A$ .

Rezk descent principle: The slice functor

Slice : 
$$S^{op} \to CAT_{\infty}$$

takes colimits to limits:

$$\mathcal{S}/\varinjlim_{i\in I} A_i = \varprojlim_{i\in I} \mathcal{S}/A_i$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

for every diagram  $A: I \rightarrow S$ .

#### The descent principle

By the descent principle, we have

$$\mathcal{S}/(A \sqcup B) = \mathcal{S}/A \times \mathcal{S}/B$$

and more generally,

$$\mathcal{S}/\bigsqcup_{i\in I}A_i = \prod_{i\in I}\mathcal{S}/A_i$$

Every space  $A \in S$  is a coproduct of singletons:  $A = A \times 1 = \sqcup_A 1$ . By the descent principle, we have

$$\mathcal{S}/\mathcal{A} = \mathcal{S}/\sqcup_{\mathcal{A}} 1 = \prod_{\mathcal{A}} \mathcal{S}/1 = \prod_{\mathcal{A}} \mathcal{S} = \mathcal{S}^{\mathcal{A}}$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

#### $\infty$ -topoi

Recall that the category of sets Set is the basic example of a Grothendieck topos. Another example is the category of presheaves  $\operatorname{Set}^{C^{op}}$  on a small category *C*. Every Grothendieck topos  $\mathcal{E}$  is a left exact localization of a presheaf category.

Note: a functor is said to be *left exact* if it preserves finite limits.

The quasi-category of spaces S is the basic example of an  $\infty$ -topos. Another example is the quasi-category of presheaves  $S^{C^{op}}$  on a small quasi-category C. Every  $\infty$ -topos  $\mathcal{E}$  is a left exact localization of a presheaf quasi-category [HTT].

#### Definition

An algebraic morphism of  $\infty$ -topoi is a left exact cocontinuous functor  $\phi : \mathcal{E} \to \mathcal{F}$ .

## The descent principle

#### Lurie's theorem [HTT]:

#### Theorem

A presentable  $\infty$ -category  $\mathcal{E}$  is an  $\infty$ -topos if and only if the descent principle holds in  $\mathcal{E}$ :

$$\mathcal{E}/\varinjlim_{i\in I}A(i)=\varprojlim_{i\in I}\mathcal{E}/A(i)$$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

for any diagram  $A: I \to \mathcal{E}$ .

#### Sheaves

Let  $\mathcal{E}$  be an  $\infty$ -topos.

We denote by  $\Delta(u) : A \to A \times_B A$  the diagonal of map  $u : A \to B$ in  $\mathcal{E}$  and by  $\Delta^n(u)$  the *n*-th iterated diagonal of *u*.

The diagonal closure of a set of maps  $\Sigma \subseteq \mathcal{E}$  is defined to be the set  $\Delta^{\infty}(\Sigma) = \{\Delta^n(u) \mid u \in \Sigma, n \in \mathbb{N}\}.$ 

Recall that an object  $X \in \mathcal{E}$  is said to be *local* with respect to a map  $u : A \to B$  if the map  $Map(u, X) : Map(B, X) \to Map(A, X)$  is invertible.

#### Definition

[ABFJ3] Let  $\Sigma$  be a set of maps in an  $\infty$ -topos  $\mathcal{E}$ . We say that an object  $X \in \mathcal{E}$  is a  $\Sigma$ -sheaf if it is local with respect to every base change of the maps in  $\Delta^{\infty}(\Sigma)$ . We write  $Sh(\mathcal{E}, \Sigma)$  for the full-subcategory of  $\Sigma$ -sheaves.

#### Sheaves

#### Theorem

[ABFJ3] Let  $\Sigma$  be a set of maps in an  $\infty$ -topos  $\mathcal{E}$ . Then the subcategory  $Sh(\mathcal{E}, \Sigma)$  of  $\Sigma$ -sheaves is reflective and the reflector  $\rho : \mathcal{E} \to Sh(\mathcal{E}, \Sigma)$  is left exact. The subcategory  $Sh(\mathcal{E}, \Sigma)$  is an  $\infty$ -topos and the reflector  $\rho$  inverts the maps in  $\Sigma$  universally among algebraic morphisms of  $\infty$ -topoi.

In other words, if  $\phi : \mathcal{E} \to \mathcal{F}$  is an algebraic morphism of  $\infty$ -topoi and the maps in  $\phi(\Sigma) \subseteq \mathcal{F}$  are invertible, then there exists a unique algebraic morphism of  $\infty$ -topoi  $\psi : Sh(\mathcal{E}, \Sigma) \to \mathcal{F}$  such that  $\psi \rho = \phi$ .



・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

# Topo-logy [AJ]

Topos =Logos<sup>op</sup> Logos =Topos<sup>op</sup>

By definition, an object of the category  $\mathbf{Log}_{\infty}$  is an  $\infty$ -topos (now called an  $\infty$ -logos) and a morphism of  $\infty$ -logoi  $\phi : \mathcal{E} \to \mathcal{F}$  is a left exact cocontinuous functor.

The category of  $\infty\text{-topoi}\,\mathbf{Top}_\infty$  is defined to be the opposite of the category  $\mathbf{Log}_\infty.$ 

Remark: The category  $\mathbf{Log}_{\infty}$  is actually an  $(\infty, 2)$ -category, in which the 2-cells are natural transformations.

The category  $\bm{Log}_\infty$  has many properties in common with the category of commutative rings [HTT] [AJ].

# Logos theory vs commutative algebra [HTT][ABFJ5]

| commutative ring                                                | logos                                                                       |
|-----------------------------------------------------------------|-----------------------------------------------------------------------------|
| ring of integers $\mathbb Z$                                    | the logos of spaces ${\cal S}$                                              |
| sum: <i>a</i> + <i>b</i>                                        | colimit: $A \sqcup_C B$                                                     |
| product: $a \times b$                                           | finite limit: $A \times_C B$                                                |
| distributive law:<br>$a \times (b+c) = a \times b + a \times c$ | base change<br>$u^*: \mathcal{E}/B \to \mathcal{E}/A$<br>preserves colimits |

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ○ □ ○ ○ ○ ○

| Commutative algebra                           | Theory of logoi                                                                  |
|-----------------------------------------------|----------------------------------------------------------------------------------|
| morphism of rings $\phi: A \rightarrow B$     | morphism of logoi $\phi: \mathcal{E}  ightarrow \mathcal{F}$                     |
| polynomial ring $\mathbb{Z}[x]$               | free logos $\mathcal{S}[X]$                                                      |
| tensor product $A \otimes B$                  | tensor product $\mathcal{E}\otimes\mathcal{F}$                                   |
| ideal $J \subseteq R$                         | congruence $\mathcal{J} \subseteq \mathcal{E}$                                   |
| quotient ring $ ho: R 	o R/J$                 | left exact localization $\rho: \mathcal{E} \to \mathcal{E} /\!\!/ \mathcal{J}$   |
| product of ideals $J_1 \cdot J_2 \subseteq R$ | product of congruences $\mathcal{J}_1 \cdot \mathcal{J}_2 \subseteq \mathcal{E}$ |

## Congruences

If  $\mathcal{M}$  is a class of maps in an  $\infty$ -category  $\mathcal{E}$  let us denote by  $\tilde{\mathcal{M}}$  the full subcategory of  $\mathcal{E}^{[1]}$  spanned by the maps in  $\mathcal{M}$ .

#### Definition

 $[ABFJ3] \mbox{ If $\mathcal{E}$ is an $\infty$-logos, we say that a class of maps $\mathcal{J} \subseteq \mathcal{E}$ is a congruence if the following conditions hold:}$ 

- 1. every isomorphism belongs to  $\mathcal{J}$ ;
- 2. the class  ${\mathcal J}$  is closed under composition;
- 3. the full-subcategory  $\tilde{\mathcal{J}} \subseteq \mathcal{E}^{[1]}$  is a sub-logos (= it is closed under colimits and finite limites)

For example, if  $\phi : \mathcal{E} \to \mathcal{F}$  is a morphism of  $\infty$ -logoi, then the class  $\mathcal{J} = \phi^{-1}(\mathsf{lso})$  is a congruence.

## Product of congruences

The category of arrows  $\mathcal{E}^{[1]}$  of an  $\infty\text{-logos}\ \mathcal{E}$  has a natural symmetric monoidal structure given by the pushout products of maps in  $\mathcal{E}.$ 

Recall that the *pushout product*  $f \Box g$  of two maps  $f : A \to B$  and  $g : C \to D$  is the map

$$(A \times D) \sqcup_{A \times C} (B \times C) \rightarrow B \times C$$

The *product* of two congruences  $\mathcal{J}_1, \mathcal{J}_2 \subseteq \mathcal{J}$  is defined in [ABFJ5] by letting

$$\mathcal{J}_1 \cdot \mathcal{J}_2 = \{ f_1 \Box f_2 \mid f_1 \in \mathcal{J}_1, f_2 \in \mathcal{J}_2 \}^{\mathsf{c}}$$

where  $(-)^{c}$  denotes the congruence closure of a class of maps.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ● ○ ○ ○

# Bibliography

- [ABFJ6] M. Anel, G. Biedermann, E. Finster, A. Joyal. Unifying Goodwillie and Weiss calculi. (in preparation)
- [ABFJ5] Left exact localizations of higher topoi III: the acyclic product.(submitted)
- [ABFJ4] Left exact localizations of higher topoi II: Grothendieck topologies. JPAA (June 2023).
- [ABFJ3] Left exact localizations of higher topoi I: higher sheaves. Adv. Math. (2022).
- [ABFJ2] A generalised Blakers-Massey theorem. Journal of Topology 13 (2020).
- [ABFJ1] Goodwillie's calculus of functors and higher topos theory. Journal of Topology 11.4 (2018).
- [AJ] M. Anel & A. Joyal, *Topo-logie*. A chapter in "New spaces in Mathematics". Camb. UP (2021).

# Bibliography

- [AL18] M. Anel and D. Lejay. Exponentiable higher toposes. arXiv : 1802.10425v1
- [AS20] M. Anel & L. Subramaniam. Small object arguments, plus construction, and left exact localizations arXiv : 2004.00731v2
- [BD] G. Biedermann and B. Dwyer. Homotopy nilpotent groups. Algebraic and Geometric Topology (2008)
- [BV] M. Boardman & R. Vogt. Homotopy invariant algebraic structures on topological spaces. SLNM 347 (1973)
- [C] D.C. Cisinski. Higher categories and homotopical algebra. Cambridge UP (2019).
- ▶ [J] A. Joyal. *Quasi-categories and Kan complexes*. JPAA. Vol 175 (2002).
- ▶ [HTT] J. Lurie. *Higher topos theory*. (version 10, 2012).
- ▶ [HA] J. Lurie. *Higher algebra*.
- [Rez1] C. Rezk. A model for the homotopy theory of homotopy theories Trans. AMS Vol.353 (2001)