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Designing today’s engineering systems could have positive societal impact, but is complex

» Autonomous systems as a proxy for complex systems, which might have positive societal impact

Roboflies to monitor environments (Fuller et al.) UAVs for search and rescue tasks (Scaramuzza et al.)



Need new tools to model and solve complex systems design optimization problems

» Societal impact of new technologies depends on their joint design with existing systems

Intermodal mobility networks (NASA UAM ) Networks of tankers (Signal Ocean)
Example - Autonomy: or hell?
30% of the cars would be enough Your Uber Car Creates Congestion. Should

You Pay a Fee fo dee?(New York Tlmes |
First- and last-mile mobility - .. T LRI

could make public transit

more convenient and attractive

_,_‘ 2;_3‘ P R |
. Data Centers on Wheels Em|55|ons From
More affordable, sustainable Fral - Computing Onboard Autonomous Vehicles

Soumya Sudhakar ®, Vivienne Sze ®, and Sertac Karaman ®, Massachusetts Institute of Technology,
Cambridge, MA, 02139, USA

Single components are slowly well understood, but we still lack a (formal and practical) theory
for the task-driven co-design of complex systems



» Motivation
- New challenges of engineering design
- Motivation from autonomy and mobility
- Desiderata for co-design
» Monotone Co-Design
- Modeling design problems
- Examples across domains
- Design queries and optimization
- From autonomy to mobility systems
» Strategic interactions

- Game theory to deal with strategic interactions

» Outlook on future research

Website containing all papers and more pointers:

https://gioele.science

Agenda

Driven by societal challenges, I develop efficient
computational tools to automate the formulation and
solution of large, complex system design problems
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» Motivation
- New challenges of engineering design
- Motivation from autonomy and mobility

- Desiderata for co-design

i Driven by societal challenges, I develop efficient
i computational tools to automate the formulation and
i solution of large, complex system design problems

Website containing all papers and more pointers:

https://gioele.science
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Autonomy as the frontier of complexity for the co-design of complex systems

A fleet of autonomous software behavior coordination
hicles hardware
vehi . . o e
actuation localization planning  invasivity
= sensin : : N
5 control interaction learning liability
computation .
perception mapping regulations
energetics communication infrastructure

OMG!

We forget why we made choices, and we are afraid to

So many components (hardware, software, ...), make changes (high failure cost).

and choices to make! . . .
We need faster design cycles, nimbler execution.

Nobody understands the whole thing!

anthropomorphization “My dear, it’s simple: you lack
of 21st century ~ a theory of co-design!”
engineering malaise Formal
Quantitative

Intellectually tractable

T




Your system is just a component in another person’s system

Infrastructure level Optimal infrastructure choices

Service level .
Optimal deployment

Platform level Choice of components

Subsystem level Single component design




Complex systems typically feature multi-stakeholders interactions

S Policy makers Academia
Liability Michelle W Tech Developers
Mobility (Christian Mumenthaler, (Michelle Wu, P
. . Mayor Boston) (Sally Kornbluth, Industry
providers CEO SwissRe) . [ Ma
(Tamey Tesler - MIT president) (Laura Major,
’ CTO Motional)

CEO MassDOT)

77
/ 3
/ 4 /"l’//

] A

i/ A pricing  congestion equity

ethics service design ROI accessibility Jleet sizes
operations liability
performance and sustainability across scales
technology
infrastructure - incentives, taxes
, policies
investments

regulations




Challenges for automated co-design of complex systems

Complexity when designing complex systems

Y N\

Large systems Strategic interactions
e Many components, scales e Many agents
e Heterogeneous natures e Heterogeneous interactions
e Multiple objectives e Conflicts/collaborations

software behavior

A fleet of autonomous coordination
vehicles hardware . . e
actuation localization planning 1nvasivity
— sensing i .
control Interaction  je,rpjng
computation .
perception  Mapping regulations
energetics

communication infrastructure




Desiderata for the automation of complex systems co-design

» Formal, domain-independent

» Computationally tractable

- Need to compute solutions efficiently

» Compositional, hierarchical

- My system is a component of somebody else’s system

» Collaborative

- Pooling knowledge from experts across fields.

» Intellectually tractable

- Not exclusively accessible to system architects

» Continuous

- Design is not static: it should be reactive to changes in goals and contexts

10



» Motivation
- New challenges of engineering design
- Motivation from autonomy and mobility
- Desiderata for co-design
» Monotone Co-Design
- Modeling design problems
- Examples across domains
- Design queries and optimization
- From autonomy to mobility systems
» Strategic interactions

- Game theory to deal with strategic interactions

» Outlook on future research

Website containing all papers and more pointers:

https://gioele.science

Agenda

Complexity when designing complex systems

7 N\

Large systems
e Many components
e Heterogeneous natures
e Multiple objectives

Strategic interactions
e Many agents
e Heterogeneous interactions
e Contflicts/collaborations

11
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A new approach to multi-disciplinary engineering “co”-design

» A new approach to collaborative, computational, compositional, continuous design
designed to work across fields and across scales.

» Leverages domain theory, applied category theory, and optimization

» Roadmap:

- Defining “design problems” for components.

- Modeling co-design constraints in a complex system.

- Efficient solution to design queries.

“Co-design diagram”™
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A new approach to multi-disciplinary engineering “co”-design

» A new approach to collaborative, computational, compositional, continuous design
designed to work across fields and across scales.

» Leverages domain theory, applied category theory, and optimization

N

» Roadmap:

- Defining “design problems” for components.

a “pro” box

Access the book at:
https://bit.ly/3qQNrdR

- Modeling co-design constraints in a complex system.

- Efficient solution to design queries.

“Co-design diagram”™
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A new approach to multi-disciplinary engineering “co”-design

» A new approach to collaborative, computational, compositional, continuous design
designed to work across fields and across scales.

» Leverages domain theory, applied category theory, and optimization

N

» Roadmap:

- Defining “design problems” for components.

a “pro” box

- Modeling co-design constraints in a complex system.

- Efficient solution to design queries.

“Co-design diagram”™

An Invitation to

APPLIED
CATEGORY
THEORY

Seven Sketches

in Compositionality

BRENDAN FONG
DAVID . SPIVAK

Access the book a
https://bit.ly/3qQNrdR
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An abstract view of design problems

» Across fields, design or synthesis problems are defined with three spaces:
- : the options we can choose from;
- functionality space: what we need to provide/achieve;

- requirements/costs space: the resources we need to have available;

‘ -« ‘ ................................... > ‘
functionality costs,
(provided) resources
(required)
desired behavior budget
specifications requirements
objectives dependencies
guarantees assumptions
conclusions

“function” “function”



Partially ordered sets model trade-offs, across fields

» Posets model standard costs in engineering (Rsq, <), (N, <)

» ... but also enable richer cost structures, with incomparable clements

A poset of positive-definite matrices

A poset of ACT

Posets of rules, which induce priorities over behaviors

talks venues

ACT Conferences A =ppmn) B

/ \

Topos Colloquium Berkeley Seminar

XTAX < XTBx Vxec R

aelo S el el

0 1 ~1/8

XTBXx

s

collision
|

~—

area violation

clearance,

3/4

0 2

X2
=1

|RAL22, CDC’22, IROS’21, ECC’21] 14



Partially ordered sets model trade-offs, across fields

A poset of sensor/algorithm pairs
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An abstract view of design problems

» Across fields, design or synthesis problems are defined with three spaces:
: : the options we can choose from;
- functionality space: what we need to provide/achieve;

- requirements/costs space: the resources we need to have available;

‘F ‘ ................................... }‘

Partially to maximize choices to minimize
ordered sets

S~ —(F, =) — (R, =g/

10



Transparent vs black-box models

» The “Design Problems with Implementations” model is a “transparent” model:

F I R
®
p prov. e .__35__r_eg|____+.
® ®

» DP model: direct feasibility relation between functionality and resources (“black box”) as a monotone map:

feasibility relation d

d: F°P X R —pes Bool ... a “boolean profunctor”
(f*,rY>3diel: (f <gprov(i)) A(req(i) <g 1)

» Monotonicity:

- Lower functionality does not require more resources;

- More resources do not provide less functionality.

17



Co-design enables a rich class of model population techniques

“Catal 7. off-the-shelf desi
} a a Ogues . O e S e eSlgnS . Spark Phantom3Std Phantom4Adv Phantom4Pro Mavic Inspire
& = n o ® E - . 3
N P | ¥ = = & T e i
amazon B Latterios Flight time 16 mins 25 mins 30 mins 30 mins 27 mins 27 mins
! Prirme
Top Speed 31 mph (50 km/h) 86 mph (58 km/h) 45 mph (72 km/h) 45 mph (72 km/h) 40 mph (65 km/h) 58 mph (94 km/h)
,;;¢g§a£§ :naﬁgaﬁgz. - CBr o
- i = R S R (R « v =
?ﬁf%&“ﬁt @—w e b L+t b v Range 1.2 miles (2 km) 0.6 miles (1 km) 4.3 miles (7 km) 4.3 miles (7 km) 4.3 miles (7 km) 4.3 miles (7 km)
‘W.'E,{;k;'g'féfz f?";g\ : lg ! l?i‘»,‘l’ : r gilg \;? g 7]
o HEE o ] - '.‘3.:5’-“'5"._' L - It & g
. -e@; : ole X ,‘g A 3 ';‘{;a .‘.w".«,»,r'-- i3 | ‘iu}y C 12-MP stills 12-MP stills 20-MP stills 20-MP stills 12-MP stills 20.8-MP stills
e 2 ¢! ‘ 9 bie RN amera 1080p video 2704 x 1520p video 4K 60fps video 4K 60fps video 4K video 4K/5K video
- -
AA Batteries AAA Batteries 9V Batteries D Batteries C Batteries Si 56x56x2.1in 13.8 in diagonal 13.8 in diagonal 13.8 in diagonal 13.2 in diagonal 16.8x12.5x16.7in
1ze (14.3x14.3x 5.5 cm) (350 mm) (350 mm) (350 mm) (360 mm) (42.7 x 31.7x 42.5 cm)
Takeoff welght 11.6 0z (330 g) 2.61b (1.2kg) 31b (1.4 ko) 31b (1.4 kg) 1.6 Ib (743 kg) 8.81b(4kg)
Follow me, Return Follow me, Return Follow me, Return Follow me, Return Follow me, Return Obstacle avoidance,
Other features home, Obstacle home home, Obstacle home, 3 Direction home, Obstacle avoid-  Spotlight Pro/Broadcast/
avoidance, FPV avoidance Obstacle avoidance ance, folding arms Composition mode
US$499 US$499 US$1,349 US$1,499 US$999 US$2,999
($6,198 with camera/gimbal)

Price



Co-design enables a rich class of model population techniques

“Catalogues”: off-the-shelf designs.
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“First-principles”: analytical relations.

amazon

\‘—-”Fhﬂnnmdh-';

-

. -
3

Flight time

Top Speed
Range
Camera

Size

Takeoff weight
Other features

Price

mission energy = mission duration X power consumption

Spark Phantom3Std Phantom4Adv Phantom4Pro Mavic Inspire

o .0
ey =

16 mins 25 mins
31 mph (50 km/h) 86 mph (58 km/h)

1.2 miles (2 km) 0.6 miles (1 km)

12-MP stills 12-MP stills

1080p video 2704 x 1520p video
56x5.6x2.1in 13.8 in diagonal

(14.3x14.3x 5.5 cm) (850 mm)

11.6 0z (330 g) 2.61b (1.2kg)
Follow me, Return Follow me, Return
home, Obstacle home
avoidance, FPV

US$499 US$499

i F & i
> A,
30 mins 30 mins
45 mph (72 km/h) 45 mph (72 km/h)

4.3 miles (7 km)

20-MP stills
4K 60fps video

13.8 in diagonal
(850 mm)

31b (1.4 kg)
Follow me, Return

home, Obstacle
avoidance

US$1,349

4.3 miles (7 km)

20-MP stills
4K 60fps video

13.8 in diagonal
(850 mm)

31b (1.4 kg)
Follow me, Return

home, 3 Direction
Obstacle avoidance

US$1,499

-

w5

27 mins 27 mins

40 mph (65 km/h) 58 mph (94 km/h)

4.3 miles (7 km) 4.3 miles (7 km)
12-MP stills 20.8-MP stills
4K video 4K/5K video
13.2 in diagonal 16.8x12.5x16.7 in
(850 mm) (42.7 x31.7x42.5cm)
1.6 Ib (743 kg) 8.81b(4kg)
Follow me, Return Obstacle avoidance,
home, Obstacle avoid-  Spotlight Pro/Broadcast/
ance, folding arms Composition mode
US$999 US$2,999

($6,198 with camera/gimbal)
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Co-design enables a rich class of model population techniques

“C&talOglleS”I Off'the'Shelf deSigIlS. Spark Phantom3Std Phantom4Adv Phantom4Pro Mavic Inspire

Ao R Lot e # |
e = e rs G

amazon Al~ | batteries F|ight time 16 mins 25 mins 30 mins 30 mins 27 mins 27 mins
! Prime
- TOp Speed 31 mph (50 km/h) 86 mph (68 km/h) 45 mph (72 km/h) 45 mph (72 km/h) 40 mph (65 km/h) 58 mph (94 km/h)
g o I L G o
..:ca,t’&f&b gh\-ﬂ‘”"» :‘n,‘m e ST [ . R R '
- e LN e P 7 Lk \ :\‘b - . . .' v 5 e N
’5‘%}:’;&%’5 R P T (:a‘ t\% : i Ewrac TES TS Range 1.2 miles (2 km) 0.6 miles (1 km) 4.3 miles (7 km) 4.3 miles (7 km) 4.3 miles (7 km) 4.3 miles (7 km)
AN ax(#@EiGEE ~E e ,(; e v L ¥ ./ k¢ ¢ (X L
o lRERAME  SACEEE (el Wty e
"'s’@d .‘: ole dd a 5‘ ) 3] ,‘§ AV v f': e . i | ‘iw C 12-MP stills 12-MP stills 20-MP stills 20-MP stills 12-MP stills 20.8-MP stills
% o1 2 ,4\:“;@‘ _ 9 = ‘ Q e amera 1080p video 2704 x 1520p video 4K 60fps video 4K 60fps video 4K video 4K/5K video
\: it - -
AA Batteries AAA Batteries 9V Batteries D Batteries C Batteries Si 56x5.6x2.1in 13.8 in diagonal 13.8 in diagonal 13.8 in diagonal 18.2 in diagonal 16.8x12.5x16.7 in
1ze (14.3 x14.3 x 5.5 cm) (360 mm) (350 mm) (350 mm) (360 mm) (42.7 x 31.7 x 42.5 cm)
Takeoff welght 11.6 0z (330 g) 2.61b (1.2kg) 31b (1.4 ko) 31b (1.4 kg) 1.6 Ib (743 kg) 8.81b(4kg)
Follow me, Return Follow me, Return Follow me, Return Follow me, Return Follow me, Return Obstacle avoidance,
Other features home, Obstacle home home, Obstacle home, 3 Direction home, Obstacle avoid-  Spotlight Pro/Broadcast/
avoidance, FPV avoidance Obstacle avoidance ance, folding arms Composition mode

US$999 US$2,999

($6,198 with camera/gimbal)

Price US$499 US$499 US$1,349 US$1,499

» “First-principles”: analytical relations.

amazon -
~~—Drirmelir -

mission energy = mission duration X power consumption

) €6

» “Data-driven”, “on-demand”
- The optimization will only ask for a sequence of data points. The model is constructed incrementally.

- Opens the door to experiments, black-box simulations, solutions of optimization problems.



Design problems arise naturally in many domains, across scales

Infrastructure level

Service level

Platform level

Component level

demand

speed [rad/s]

torque [Nm |

investments

Mobility system

Swarm operations

AV

Motor

19



Design problems can be composed in various ways, preserving properties

“parallel” “feedback”

“choose between
two options”

» The composition of any two DPs returns a DP (closure) There is a category DP which is

traced monoidal, and locally posetal
» Very practical tool to decompose large problems into subproblems

Formal

Compositional/hierarchical .



Multiple queries from the same design problem

» Two basic design queries are:

Given the functionality to be provided,
what are the minimal resources required?

FixFunMinReq
design problem
functionality — r N - - - - resource
: . = S :
functionality — ;@’ B - - - resource
FixReqMaxFun

Given the resources that are available, what is
the maximal functionality that can be provided?

21



Multiple queries from the same design problem

» Two basic design queries are:

Given the functionality to be provided,
what are the minimal resources required?

FixFunMinReq
design problem
functionality — r . - - - - resource
: . S :
functionality — ;@’ B - - - resource
FixReqMaxFun

Given the resources that are available, what is
the maximal functionality that can be provided?

» The two problems are dual

21



Multiple queries from the same design problem

» Two basic design queries are:

Given the functionality to be provided,
what are the minimal resources required?

FixFunMinReq

. _ design problem
functionality —¢ B - - - resource

: ' :
functionality — @ B - - - resource

FixReqMaxFun

Given the resources that are available, what is
the maximal functionality that can be provided?

» We are looking for:

- A map from functionality to upper sets of feasible resources: h: F -%UR

- A map from functionality to antichains of minimal resources: h: F — AR

A

Computer: Nano
Frequency: 6.25 Hz

a1 Battery: LCO

meT e =t

S — C TX2
. omputer:
E }\d?:_/( Actuator: 1 Frequency: 25 Hz
%D 01k Sensor: Blackfly (|X: 719" Battery: LCO
= =
Q Computer: TX1
s Frequency: 12.5 Hz }\@—/{ Actuator: 3
= a: 51.79 Battery: NiH2 |
- I Sensor: Ace251gm
0.05 | =
)

Actuator: 1

15 20 25 30 35
Power consumption [W]

40

21



Optimization semantics

» This is the semantics of FixFunMinReq as a family of optimization problems.

--------------------------------------------------------------------------------------------------------
. g
* *

chosen f

by user

(3 *
*
¥ N R RN RN R RN RN EEE R AN AR R AR AN AN RN AN AN AN NN AN AN EEEEE AN AN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEmEmEmns®
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for each node:
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- - - -1
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Min 7
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__ri@_.[:

for each edge:

i

ri = f

co-design constraint

to minimize

el . N\
speed [m/s] o O I
__________________ 2 tota
. — rower [W]
(| Actwation sty =225 e P
resolutior power [W] !
4 | — TCHE ( |
é@ Vision | cost[CHF] = '
‘observe |
' mass [g
batd [Hz] Feature B Sensor [ _Ass _L_I_ B @_\
. " o, . frequenc - -
control effort| Extraction .‘ Vs impl. feature
, -
system p - atd [Hz]| Implement
) b (- |- |- |-
noise W LQG i prccision Feature
T impl. control
Control [ __ = ______________ 1mp
[ " atd [Hz] | Implement
- tracking error b |-~ |- |
%« - Control
number of missions MlSSlf)n __________ @ J
Planning =
mission time [s] , cost [CHF] @

energy stored [J
—————— —— U} Battery

| not convex

I not differentiable

I not continuous

I not even defined on
continuous spaces
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Compositional solution of design problem queries

» Suppose that we are given the map hy : F, — ARy for all nodes in the co-design graph

--------------------------------------------------------------------------------------------------------
.
* .

0 .
--------------------------------------------------------------------------------------------------------

» Can we find the map h: F — AR for the entire graph? VComputatwnally tractable

... a functor between a

category of problems
solution( composition(a, b)) = composition( solution(a), solution(b)) and one of solutions

» Compositional approach: just need to work out the composition formulas for all operations

» The set of minimal feasible resources can be obtained as the least fixed point of a monotone function in the space of anti-chain

» We have a complete solution: guaranteed to find the set of all optimal solutions a options c options
(if empty, certificate of infeasibility)
b options
» The complexity is not combinatorial in the number of options for each component
» The complexity depends on the complexity of the interactions: the co-design constraints O(a+b +c)
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A new category of upper sets

Definition (Category Pos;;)
The category Pos;; consists of:

1. Objects: objects are posets;

2. Morphisms: given objects X, Y & Obpyg,,, morphisms from f : X — V¥ are
monotone maps of the form | X —pos UY.

3. Composition of morphisms: Given morphisms [ : X — Y, g: Y — Z, their
composition | g : X — 7 is given by

(fgg)*: X —pes UZ

X = y f*(x)g*(y);

4. Identity morphism: given an object X' € Obpyg ,theidentity morphismidy : X —
X is given by the application of the upper closure operator:

id;g(x) =T {x}.
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From problems to solutions

Lemma 7.23. There is a functor Lemma 7.24. There is a functor

FixFunMinRes : DP — Pos;, (50) FixResMaxFun : DP — Pos
that maps: which maps:
1. An object (poset) in DP to the same object (poset) in Pos;;. 1. An object (poset) of DP to the same object (poset) in Pos; .
2. A morphism e € Hompp(F; R) to the morphism H, € Hompgs,, (F; R), where: 2. Amorphism e € Hompp(F; R) to the morphism K, € Hompys, (R; F), where:
HE RS TR K¢ : R —>pos LF
Fr-lreRIelf r—{f eF|e(f* r)
/ POSU
FixFunMinResBack
FixXFunMinRes . .
/ Interesting question:
DP A enriching in performance?
\ FixResMaxFunBack
. \
FixResMaxFun
Pos

25



» “Catalogues”: already available designs

-

m M

capacity [ ] | —

\_

» “First-principles”: analytical relations.

-

m M

capacity [ ] | — |_ .|.\

lift [ N | —e

-

o

actuators

Sl

|@=ssnnnsns poWeI‘ [ W ]

User-friendly interfaces

catalogue {
provides capacity [J]
requires mass [g]
requires cost [USD]

500 kWh «— model! ~— 100 g, 18 USD

600 kWh <— modelZ +— 200 g, 200 USD

608 kWh «— model3 +— 250 g, 150 USD

700 kWh «— modeld ~— 400 g, 488 USD
}
mcdp {

provides capacity [J]
requires mass [kgl

specific_energy_Li_Ion = 508 Wh / kg

required mass >= provided capacity / specific_energy_Li_Ion

}
mcdp {

provides 1ift [N]

requires power [W]

c = 19.8 W/N?

required power > c - provided lift?
}

... and a solver

20



A systematic process for task-driven co-design of complex systems

» A new approach to co-design designed to work across fields and across scales. » Modeling approach

» What we have seen:

- Defining “design problems” for components. » Actual implementation:
- Modeling co-design constraints in a complex system. - Coming up with the skeleton/diagram
- Efficient solution to design queries. - Populating the models

“Co-design diagram for a drone”

N
C speed [m/s] power [W] ol ° °
N e R e Pareto front of optimal designs
(lift [N] Actuation [~ massg” 77777\ = R~ ~ + P .
e resolution _power [W] f /—- '
‘observe | [jxél_‘}dl' ViSion 'C'O§t'['C'H'F'] j E ° ° ° A
control exfort, Extraction [ "/ impl. featurc ! Fr(e)gll};lrllg; 63I510Hz
system LQG atd [HI]J InI;Plement p —|— |- |- |- computation [op/s] : for a SeaFCh-and-rescue 0.15 a: 1 Battery: LCO
ise W T isi eature | 15 | |
noise Conteol 1777 g precision impl. control + ]> TN taSk iy -
: ____ _________ o at d [Hz] Implement o) ( :) Jcompululion Iop/xl: : o Actuator: 1 Computer: X2
tracking error ®ﬁ—<~ Control \ ot o 5 }\C[CI):_/{ Frequency: %?9HZ
N — ! :}‘(’f;’lllf]"“ > 0 4 Sensor: Blackfly a: Battery: LCO
S Mission +p----- R £ Uir |
number of missions | T ooron b . @ J — Lo Z —
Planning = ' Q Computer: TX1
Lo S - 12. }\@—/{ Actuator: 3
mission time [s] cost [CHF] @ . a .51 . Ni |
energy stored [J] = \_ otal mass! ! 0.05 | F‘::jj Sensor: Ace251gm
- X p------ © Battery [ma§s_[_g 3 . B I}‘, o |
power [W]
EREET S ’ ( o
i J
— Computing p---------- S . 15 20 25 30 35 40
mass [g] J S :
----------- S Lo Power consumption [W]
@ total computation [op/s] ! .
—————————————— S
- () - s




A systematic process for task-driven co-design of complex systems

» A systematic modeling approach:
- Define the task - what do we need to do?

urban driving

28



A systematic process for task-driven co-design of complex systems

» A systematic modeling approach:
- Define the task - what do we need to do?

- Functional decomposition - how to decompose the functionality?

urban driving

~
~
~
~

follow trajectory ke
— T
lateral control longitudinal control
path tracking / \(
speed tracking emergency braking

Vi




A systematic process for task-driven co-design of complex systems

» A systematic modeling approach:
- Define the task - what do we need to do?
- Functional decomposition - how to decompose the functionality?

- Find components - decompose until you find components (hardware and software)

computer
Sensing . state
command
data estimate
Sensor estimation control
requires  gepging requires
— —>  SCensor
data
decision ~ I€qUIIES state requires requires
making > estimation ——>  algorithm  ——» programmers

: computation
requires P —» computer

Data/Information flow

Logical dependencies
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A systematic process for task-driven co-design of complex systems

» A systematic modeling approach:
- Define the task - what do we need to do?
- Functional decomposition - how to decompose the functionality?
- Find components - decompose until you find components (hardware and software)

- Find common resources and add them
In autonomy, size, cost, weight, power, computation

| b- - - - cost [CHF]
environment —¢ Task =" power [W]
function-specific K b - computation [op/s]
performance - - - - mass [g]

Y

implement } resources |

task ( b-task 1
SUup-=tas
performance P } sub =

environment { decomposition subtas
implement |
sub-task 2 resources 2




Feedback as the irreducible complexity of system design

» Where is feedback? In the co-design constraints

robot must robot requires
carry battery actuators to move

range [m]

capacity [pax/car]

speed cruise [m/s]

operational cost [CHF/km]
energy externalities [kg/km]
fix cost [CHF]

danger [kg - m/s]
discomfort

total computation [op/s]
total mass [kg]

total power [W]

system noise

engineering problem

&

required
resources

/\ P e N environment
batterz\/ actuators
battery must power motor
p
components must provided
b“dget must Support behaviors functlonallty o
be sufficient component
for components/ \ \
budget behavior @ -
behaviors implemented ......................... .d ........... @
. . require
should justify the cost functionality

business case

&

~

provided
resources
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A systematic process for task-driven co-design of complex systems

» Actual implementation:

- Write a skeleton - write the structure using the formal language and the logical dependencies.

Context informs level of detail:

------ fix cost [USD] “back of the envelope
speed [m/s| —o AV L operational cost |[USD/mile]

calculation™

A

v
------ fix cost [USD]

speed [m/s] —o ~ [@ operational cost [USD/mile]|
tasks AV P power [W] “Autonomy design”
o e emissions |kg]
environment

...... danger
------ discomfort
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A systematic process for task-driven co-design of complex systems

» Actual implementation:

- Populate the models:

catalogues, analytic models, data-driven

( speed [m/s] power [W]
) “cost[CHF] =~~~/ N @
| Actuation iy~ O 5=
resolution power [W]

/
/sterad . 2
[px/sterad] Vision
observe ; S
: at 0 [Hz] Feature ~ acquisition ensor
. f Hz - ‘
control effort Extraction | Y Hel impl. feature
system o/ —_—_— - @ o
noise W | | LQG precision

Implement
Feature

T impl. control
Control ... .= ... @ﬁ at  [Hz]
- tracking error 1
number of missions MlSSl.OIl __________ @
Planning =

Implement
Control

mission time [s]

— Computing [

@ total computation [op/s]

power [W]___ 1)

——{x b @ energy stored [J ]' Ba ttery [

cost [CHE] S

mass [g] __ @

|

total mass!

I

[g] 1

+ -~ |
b |

! I

Continuous
Collaborative

Intellectually tractable

T

If unsure about a component, easy
to embed assumptions

Technologies don’t need to exist already -
parametric with time

Decentralized - humans in the loop 34



Task-driven co-design of an autonomous vehicle

urban driving

%

follow trajectory

— T~

lateral control longitudinal control

N

speed tracking emergency braking

path tracking

Vehicle

-SGHS . performance

' _________________
SCIS. performance

Longitudinal
control

Vi)

)
Q0

acquisition freq. [Hz]

dynamic performance [m/s - m/s* - m/s?]
o o c e meememo S J

@—j Speed sensing
o

Q—
SD—

total

|
! cost

system
noise

\_
environment

task

Lateral
control

— — -

\:

system
noise

E " Itotal
j Effort| @ i leffor
i ! total
1 Error . 1 lerror
E | E E 'total
| | =4 Discomfort| : : disc
BECaEI S,
computation ' E E
lop/s] ) ' 1

|CDC’22, IROS’21, ECC’21]

|CHF]
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Task-driven co-design of an autonomous vehicle

Catalogues of sensors/

Catalogue of computers

algorithms performances ‘[ o Y !

urban driving — > WV J oo %t"t_l-

~ o “‘ ’0.0:00.. hi l : ota

. — ~~ \ . e o Vehicle 'cost

follow trajectory \[CHF]

L T dynamic performanc'e‘[m/s . n’f/si ;r'ﬁs.z,]. :
lateral control longitudinal control - N .. . g : |
S . COS !
path tracking / \t -S-QQS-'.-R(:-&‘{? a—“-lq[% ]@z— "“Speed sensing [mass
speed tracking emergency braking Longitudinal K b L A R4~ OWEr :
sens. perfornignce = cost S
€D o I comtrol i O {Tong sensing [ss 1 e

o b CAUISIHION HE T2 — OWET _ ' 1 total

s 1 -et:f_o_rt_ _________ K < ! : eff

systemy ﬂ error % > : 1 ener

noist AR Taiscornfort S i o

control freq. [Hz[ =7 /=) Impl. control 5 1 lerror

time[s] .. e ' Peomp. [ [T ST

ot . * P || | . ' total

o environment t . lop/s] + || ! ' g

. max.steerng o SHE 1o admse
o Lateral sens. performance K : cost 1 il ' i
atera aé_ﬁfs%{iéh_f}é__l_ﬁil ~Speed sensing Prass~ " ||| || o
P task control ANOn T 1720 power "~ A L
45 effort | _____ QA . o
. S 1 N O error = I L
Solving control problems via ........ceeesarrsnmmssnrensppyrer==e® ] SIOL . Q) S : e
simulation/optimization system C.PPEY_O_I_fEe_(I-_I_H%I___ ) - Impl. control | computation ] S o
el 3 [lopisT ‘ta' RS
\_ I\-——--—--- : : : I
computation | E
( cost[CHF] 3 Clopis] | |G
mass (gl .. Q— .
power [W] = L E :

|
)

|CDC’22, IROS’21, ECC’21]
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We can find optimal designs, with insights at heterogeneous abstraction levels

A

e T R -
--------------- | 1.6 |-
memiasen: 3 .
. A o sl S R e .
Vehicle é éi ) total itc(z)tsat 1.5 p — 2-0, kI — kd — 0.01
dynamic performance (m/s - m/s? - m/s? S — Q mass [g] |CHF] Ace7gm, Ace22gm
ynamic performance [m/s - m/s* - m/s?] ) : Y -3 + p------ '
. P IR total | | 1.4 Jetson Nano
sens. performance =~ Spoed Ll power ! | o o
Longitudinal <0120 Fet el PP sensing e 11 g 44+ {1 Fixanenvironment - |
: control fH@—j Long. sensing Erpiléés::i_i-f e B ° -
] caiim S o Fix a task c Ll
system & A error &) - I R ikl ‘P ;-J-;:?_(_)r_t g
noise A —faisconifori O i ol 5 :
D tcisgér_;);ll_fr%q_lﬂz_l___@_j Impl. control ]_ _______ error - > S L1 f 0S2128, KistlerSMotion
| N Q— comp. 1|t ! otal Jetson TX1
environment i lop/s] 1+ | I < AR "
\; max.steering_ o | It :lDlscomfort).f-;__.Ei'_S_C-_ 1
Lateral sgqg_ge_r_fggmjpgt_:__ Soeed cost 1| E ; E : :
. control ;;fslot;;S.“.'?P-ff?q-'ﬂZ':j peed sensing bnucs. | g § g § ook o
1 emor . ' BN m ----------- '
8 discomfort
1 & "1"1‘f""m‘i """ | 0.8
o SR e Eon | | | | 0 S0
. 36000 40000 44000 48000 52000 54000
- cost [CHF] computatlon : -
............................................ Q— lop/s] ; AV cost [CHF]
Computing pmasslel R J L E :
r power [W| T 3 RN A
) @_____________-____________,____________,: : o
L R SERERELEE L b 2 |
(O - 0.
@ _____________________________________________________
1.8 | 5.0, np, = 20.0
° o o . 0.1 ki =0.0L. k.ij=10.05
Monotonicity in task complexi 156k
N ly p ly 28, Acel3gm
A

Nvidia Xavier

Control Error
-
o
1

—
o

o Speed [m/s]
=
f Control Error
RN W = Ot O || 0o

\

08 m kI = 0.1 4 =:0.01
i 0.6 050128, Ace22gm
Jetson TX1
0.4 F
I 02 | | | | 1
. 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

Control Effort

i 1 1 1 1 | l )
low high 0.1 0.15 0.2 0.25 0.3 0.35 0.4

Average curvature Control Effort |CDC’22, IROS’21, ECC’21|



Co-design across scales: from autonomy to mobility systems

» Mobility systems are under pressure

Travel demand is changing Need for service design and regulations Need to meet sustainability goals
By 2050, 68% of population in cities Over 1,000% ride-hailing increase in 2012-22 Cities cause 60% of GHGs, 30% from mobility

W

Philadelphia

» We look at the problem from the perspective of municipalities and policy makers

How many vehicles should we allow? How performant?

Which infrastructure investments? Which services to encourage?

» Need for demand-driven co-design of mobility solutions and the intermodal network they enable

» Several disciplines involved (transportation science, autonomy, economics, policy-making)
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Co-design to enable user-friendly tools to assess the impact of future mobility solutions

’ \ - Fix demand, minimize costs
o average trayel time [s] © Washington D.C. in 2030
MM extermalities Ike) e - >
AV externalities [kg] é N 45 2500 AV at 35 mph
""""""""""""""""""""""""""" 1T 24 &5 2500 AV at 50 mph
- network{ : )—l Public _Q’Et_e}’ll?ll_tl_e;s_ [lgg_]_ @ total :r;l!(; ](:;St:ains :r;lio(()) t]i:iils & 4000 FCSNE[lZ '
T transit 1 costlUSDL é) ‘l&ternalities —~ D 56 trains

served ransi = D gl g 929 4 2500 AVs at 40 mph
travel ' =
Mobility AV distance [r e LYIN= L. 2500 ESs & 4000 AV at 50 mph
requests e S = Q@D 0 trains
network AV network _icost operation [USD/m] 8 20 +% 4000 FCMs
operation}-Y.2C2V0IE fix cost [USD] total cost E S%O T 112 trains
- USD
number AVs e S | AV costs ]- S + LSS > 18 /
M distance [m] -, : :
=/ X & Not a unique solution!
. . _1cOSt operation [USD/m] 16
icromobilit le cost [USD] 20 30 40 | 50 60 70
\ JRumRerMYS L B - 1MMV costs]----(:)—/ Ctot [Mil USD /month]

investments

Fix environment, task

Vehicle ' \
RN 4L

sens. performance & : E:E : power ! |
acquisition freq. [Hz] EP 3 ":_:_:_ | @ ~ (W] Lo
Longltudmal sens. performance & '"~'""J5:: |- S : S + Ty il
] control e D L
JEffort’ 1 leff
Error ’

dynamic performance [m/s - m/s* - m/s?|

1, kr =0.01, kg = 0.05
2128, Acel3gm
vidia Xavier

system & .
noise M discomfort @

control freq _I_H_/_I_Q —
f @ time |s]

DIC, NO rear

Control Error
—
B
1

environmen I I r 1.
\‘, ‘ e —;-Discomfort’_: | .
Lateral I . 08 1s By = ki = 0.1; kg, =:0.01
control L] . 0.6 L 0S0128, Ace22gm
B : P Jetson TX1

syﬁlcm :j Impl. control ]-u)mpulallon © . 02 k
noise = ! ! I I
\ mestekast Qt.' . 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

tati
cost [CHF] computa l(m Control Effort

s

mass [g] ) . : : . ° °
r Computing }p W) g ; B Details about software and hardware implementations,
~ RS in a way that was not possible before

|TNSE’23, CDC’22, IROS’21, ECC’21, ITSC’20]
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» Motivation
- New challenges of engineering design
- Motivation from autonomy and mobility
- Desiderata for co-design
» Monotone Co-Design
- Modeling design problems
- Examples across domains
- Design queries and optimization
- From autonomy to mobility systems
» Strategic interactions
- Game theory to deal with strategic interactions

- Partial order games

» Outlook on future research

Website containing all papers and more pointers:

https://gioele.science

Agenda

Complexity when designing complex systems

N\

Large systems
e Many components
e Heterogeneous natures
e Multiple objectives

Strategic interactions
e Many agents
e Heterogeneous interactions
e Conlflicts/collaborations
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Explicitly accounting for strategic interactions: towards co-design games

i | average travel time [s] __
WM externalities Ike) . 3
AV externalities kel . > A
PT network public }-oernalities [ke] total
pommmem-- — t [USD = iy
served transit 1 cost[UsDl 3 N exterlrilahtles
travel ... |AV distance [ kel
requests Mobility p---------- = = v Y S &
netW(t).r k AV network AV cost operation [USD/m] al cost
OPErAtOn == S - fix cost [USD] t"[ésg’]s
jnumber AVs_ . o = @_1 AV costs }---(D—— + p-------
|uM distance [m)]
“ @ X C
.P_LM network : cromohilit _rcost operation [USD/m)]
~f1x cost [USD]
\ fnumber yMVs 3 O ——{uMV costs}--- Q—




Explicitly accounting for strategic i

nteractions: towards co-design games

i | average travel time [s]
WM externalities Ike) . 3
AV externalities [kel 3 .
lities [kg] ~
.PTnetw ?fk@ Public 'ggg? %1_81%6]_3_ kel S total' |
served transit p--------------- S . externalities
travel ... |AV distance [ kel
requests Mobility p-----=----- % 3 .- --------- S
network AV network fcost operation [USD/m]
. networ )
operationy---====2==- - O W t fix cost [USD] t"[t["}lsg’]“
jnumber AVs_ . o = @_1 AV costs }---(D—— + p-------
uM distance [m]
______________ & QR
uM network . bilit _rcost operation [USD/m]
""""""" ICPOMODTIN. . fix cost [USD]
\ fnumber yMVs 3 O ——{uMV costs}--- Q—

» Different design problems belong to different stakeholders

» Game theory: Multi-agent strategic decision making
Allows one to model interactions

» The notion of optimal designs extends to equilibria of designs

» Towards a theory of co-design games

» Two milestones towards co-design games:

Co-design features rich cost structures (posets):

- “Posetal Games” (games with posetal preferences)
[RA-L’ 22]
Interactions are naturally hierarchical:

- Mobility games via Stackelberg

|ITSC’21 (Best Paper Award), ITSC 23]

40



Explicitly accounting for strategic interactions: towards co-design games

i | average travel time [s]
WM externalities Ike) . 3
AV externalities [kel 3 .
lities [kg] ~
Procvok [ rame ol g oul
served transit Pt @ N externalities
travel ... |AV distance [ kel
requests Mobility ----------- % b S
network AV network fcost operation [USD/m]
. nctwor _
operationy---====2==- - O W t fix cost [USD] t"[t["}lsg’]“
jnumber AVs_ . o = @_1 AV costs }---(D—— + p-------
uM distance [m]
______________ &) QR
uM network . bilit _rcost operation [USD/m]
""""""" ICPOMODTIN. . fix cost [USD]
\ fnumber yMVs 3 O ——{uMV costs}--- Q—

» Different design problems belong to different stakeholders

» Game theory: Multi-agent strategic decision making
Allows one to model interactions

» The notion of optimal designs extends to equilibria of designs

» Towards a theory of co-design games

» Two milestones towards co-design games:

1\

Co-design features rich cost structures (posets):

- “Posetal Games” (games with posetal preferences)

[RA-L 22]

Next time!
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Behavior requirements for robots are numerous, vague, and conflicting

Ethics Safety Liability

Compliance to traffic rules

Extensive & diverse

Function i e written by humans for humans

Courtesy

Culture

C
Example: Boston left omfort

AL
‘:]0‘\'\'\

“Does your car have any idea
why my car pulled it over?”

41



Safety for human-driven vehicles

» Safety (i.e., prevention of unreasonable risks of driving) is typically ensured by a mix of:
- Certification of vehicles and drivers
- Rules of the road

- Enforcement by authorities and legal system

» Typically, rules rely on fundamental axioms, which require interpretation

Fundamental norm in Switzerland:
All road users must behave in such a way not to pose an obstacle or a danger to other road users

» No clear specification of safety

» It is legal to break the law to ensure safety
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Things that do not work well for AV behavior specification

» Hard constraints
- 'What do you do with infeasibility?

- Whenever you consider other actors, hard to find guarantees

» Case analysis, finite state machines, ...
- “IF statements kill people”

» Just relax!

- Hard to re-tune, prone to overfitting

- Lack of transparency
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What should we do instead?

» Throw the ball at other stakeholders

» Incorporate our own beliefs in our algorithms

» Create transparent systems
» Create customizable systems
» Explain issues to the public

» Engage with stakeholders of the problem (e.g., regulators, liability
companies, etc.)
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Minimum violation planning

» Assume that constraints will be violated, and find the alternative that least violates them

» Define rules as a total order over realizations

» Order rules according to priority

» This is practical:

Allows modular definition of behavior

Easy to predict what the car will do

Easy to understand why the car did something
One can introduce tolerances

What if rules are incomparable, or indifferent?

Taxi

Safety

T

Compliance

T

Comfort

T

Performance

Race car

Compliance

T

Performance

T

Safety

T

Comfort

See seminal work by Tumova, Karaman, Frazzoli



We capture the richness of robot behavior requirements via partial orders

» We can use pre-orders over rules to express preferences

“Rule A is more important

. “Rule A and B are not comparable” “Rule A and B are indifferent”
than rule B
A
A B A «—» B

B

» Pre-order over rules induces pre-order over outcomes b
— ¥
b and c are indifferent | C
b, ¢, d are preferred over a

collision d

b, ¢ are incomparable with d

| S
area violation clearance
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Minimum violation planning using partial orders, unbridled creativity and good taste

“The way to get good ideas is to get lots of ideas,
and throw the bad ones away.” — Linus Pauling

creativity good taste

See Rulebooks work by Censi, Frazzoli, and others



Minimum violation planning using partial orders, unbridled creativity and good taste

observations world state plan commands

——— perception ——— planning—— control ———

planning
trajectory extractors ————»
proposers plan
state 1 Mﬁ\ I
prediction ) SCOrers

models
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Defining and ordering rule groups for realistic scenarios

» Estimate: urban driving requires ~200 rules, ~20 rule groups

Safety of humans

|

Large 1nfract10
Small infra
ST

Damage to ego-car ‘ (Operatron 11m1ts) / (Not being annoying A
) < /

Safety of property

Breach of customer contract Ego -car wear and tear) A [N ot being misleading ;ustomer comfort)

N

e e \ T | S

=(Being courteous (Local driving culture violation (Behavior suggestions

|




Defining and ordering rule groups for realistic scenarios

» Estimate: urban driving requires ~200 rules, ~20 rule groups

Safety of humans

|

Safety of property

Large 1nfract10

SN
infractions i\\\

(Not being annoying A

Damage to ego-car ‘ (Operatron lrmrts) /
Breach of customer contract

Ego -car wear and tear) A Not being misleading Customer comfort)
\ o
—_— ALY ra e - \ T ™l
=(Being courteous (Local driving culture violation (Behavior suggestions

All of this is considering ego agents...

How do these specifications work with multiple, interacting agents?
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Posetal Games to deal with highly interactive multi-objective nature of decisions

» Games in short:
- Each player has a scalar utility function
- Based on preferences, players select an action from decision space
- Given joint action profile of players, we obtain a game outcome for each player via a deterministic metric function

- Equilibria are joint action profiles from which no player has interest to deviate

Related work: V.V. Rozen’18, S. Le Roux’08 50



Posetal Games to deal with highly interactive multi-objective nature of decisions

» Posetal games in short:
- Each player has a sealar-atility funetion partially ordered preference over a set of metrics (scores, costs)
- Based on preferences, players select an action from decision space
- Given joint action profile of players, we obtain a game outcome for each player via a deterministic metric function

- Equilibria are joint action profiles from which no player has interest to deviate

Technical results instantiated in trajectory driving games for urban scenarios
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Posetal Games to deal with highly interactive multi-objective nature of decisions

» Posetal games extend standard notions in game theory, and

- Provide sufficient conditions for the existence of Nash equilibria (via potential games)

- Characterize efficiency of admissible equilibria

- Design a formal, systematic way to leverage preference refinement (e.g., via estimation) to refine equilibria
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» Motivation
- New challenges of engineering design
- Motivation from autonomy and mobility
- Desiderata for co-design
» Monotone Co-Design
- Modeling design problems
- Examples across domains
- Design queries and optimization
- From autonomy to mobility systems
» Strategic interactions
- Game theory to deal with strategic interactions

- Partial order games

» Outlook on future research

Website containing all papers and more pointers:

https://gioele.science

Agenda

Modeling & Algorithmic
Foundations

Societal Applications

User-friendly Tools
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My lab will be building the next generation tools for systems design optimization

Leveraging optimization, control theory, game theory, domain theory, and applied category theory:

» Extend and improve current modeling & solution algorithms for multi-objective design optimization

» Promote interdisciplinarity by bridging the gap between standard optimization and co-design

Modeling and Algorithmic ) Explicitly account for strategic interactions of stakeholders, developing a theory of co-design games
Foundations

Queries:
FixFunMinRes

Ready,
let’s solve it

Queries:
FixFunMinRes

Quest: We want to co-design Specifications
a mobility system

Define co-design Populate the
skeleton models

adaptively and dynamically?  Quest: We want to co-design Speciﬁcationsl
a mobility system

Populate the ]
Define co-design Pt . Ready, solutign
models with sensitive , ,
skeleton . . let’s solve it
implementations

Optimize choice of

Example:
Computation-aware iterative
solution algorithms

solution

How to best change the
approximation of each model

implementations,
and number
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My lab will be building the next generation tools for systems design optimization

Leveraging optimization, control theory, game theory, domain theory, and applied category theory:

» Extend and improve current modeling & solution algorithms for multi-objective design optimization

» Promote interdisciplinarity by bridging the gap between standard optimization and co-design

Modeling and Algorithmic ) Explicitly account for strategic interactions of stakeholders, developing a theory of co-design games
Foundations

How to leverage negative information for design?

Categorification of Negative Information using Enrichment Diagrammatic Negative Information

: - , , .. Vincent Abbott Gioele Zardini
Andrea Censi Emilio Frazzoli Jonathan Lorand Gioele Zardini College of Engineering, Computing and Cybernetics Laboratory for Information and Decision Systems
Institute for Dynamic Systems and Control Australian National University Massachusetts Institute of Technology
Department of Mechanical and Process Engineering Canberra, ACT, Australia Cambridge, MA, USA
ETH Zurich, Switzerland Vincent.Abbott@anu.edu.au gzardini@mit.edu

{acensi,efrazzoli,jlorand,gzardini}@ethz.ch

In many engineering applications it is useful to reason about “negative information”. For example,
in planning problems, providing an optimal solution is the same as giving a feasible solution (the
“positive” information) together with a proof of the fact that there cannot be feasible solutions better
than the one given (the “negative” information). We model negative information by introducing the
concept of “norphisms”, as opposed to the positive information of morphisms. A “nategory” is a cate-
gory that has “nom”-sets in addition to hom-sets, and specifies the interaction between norphisms and
morphisms. In particular, we have composition rules of the form morphism + norphism — norphism.
Norphisms do not compose by themselves; rather, they use morphisms as catalysts. After providing
several applied examples, we connect nategories to enriched categtory theory. Specifically, we prove
that categories enriched in de Paiva’s dialectica categories GC, in the case C = Set and equipped with
a modified monoidal product, define nategories which satisfy additional regularity properties. This
formalizes negative information categorically in a way that makes negative and positive morphisms
equal citizens.

The flow of information through a complex system can be readily understood with category theory.
However, negative information (e.g., what is not possible) does not have an immediately evident cat-
egorical representation. The formalization of nategories using unconventional composition addresses
this issue, and lets imposed limitations on categories be considered. However, traditional nategories
abandon core categorical constructs and rely on extensive mathematical development. This creates a
divide between the consideration of positive and negative information composition. In this work, we
show that negative information can be considered in a natural categorical manner. This is aided by
functor string diagrams, a novel flexible diagrammatic approach that can intuitively show the opera-
tion of hom-functors and natural transformations in expressions. This insight reveals how to consider
the composition of negative information with foundational categorical constructs without relying on
enrichment. We present diagrammatic means to consider not only nategories, but preorders more
broadly. This paper introduces diagrammatic methods for the consideration of triangle inequalities
and co-designs DP/Feasgqo1, showing how important cases of negative information composition can
be categorically and diagrammatically approached. In particular, we develop systematic tools to rig-
orously consider imposed limitations on systems, advancing our mathematical understanding, and
present intuitive diagrams which motivate widespread adoption and usage for various applications.
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My lab will be building the next generation tools for systems design optimization

Leveraging optimization, control theory, game theory, domain theory, and applied category theory:

» Extend and improve current modeling & solution algorithms for multi-objective design optimization

» Promote interdisciplinarity by bridging the gap between standard optimization and co-design

Modeling and Algorithmic ) Explicitly account for strategic interactions of stakeholders, developing a theory of co-design games
Foundations

Richer notions of functionalities and resources:

Spatial-temporal resources Linear Logic

Modeling Choice in Co-Design

Marius Furter
July 20, 2021

Abstract

This report describes a method for modeling free and forced choice
within Co-Design. In a free choice among a set, one has control over
which option is selected, while in a forced choice one does not. Given a
preorder P describing resources or functionalities, a free choice among
a subset of P acts like a meet. Dually, a forced choice acts like a join.
Moreover, the two types of choice distribute over one another. Based
on this, we construct a universal model for choice on a preorder using
the free completely distributive lattice ULP. Feasibility relations are
then extended to these models. Along the way, we illustrate how to
work within ULP and provide results that simplify calculations. The
definitions presented here have been implemented in Haskell.
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My lab will be building the next generation tools for systems design optimization

Leveraging optimization, control theory, game theory, domain theory, and applied category theory:

» Extend and improve current modeling & solution algorithms for multi-objective design optimization

» Promote interdisciplinarity by bridging the gap between standard optimization and co-design

Modeling and Algorithmic ) Explicitly account for strategic interactions of stakeholders, developing a theory of co-design games
Foundations

Coming up with the diagrams

Humans in the loop

Interfaces

Games
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My lab will be building the next generation tools for systems design optimization

Leveraging optimization, control theory, game theory, domain theory, and applied category theory:

» Extend and improve current modeling & solution algorithms for multi-objective design optimization

» Promote interdisciplinarity by bridging the gap between standard optimization and co-design

Modeling and Algorithmic ) Explicitly account for strategic interactions of stakeholders, developing a theory of co-design games
Foundations

Uncertainty
... in the interconnection of diagrams ... (diagrams can be functionality/resources)
... in feasibility relations ...

... in the functional decomposition ...
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My lab will be building the next generation tools for systems design optimization

Leveraging optimization, control theory, game theory, domain theory, and applied category theory:

» Extend and improve current modeling & solution algorithms for multi-objective design optimization

» Promote interdisciplinarity by bridging the gap between standard optimization and co-design

Modeling and Algorithmic ) Explicitly account for strategic interactions of stakeholders, developing a theory of co-design games
Foundations
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My lab will be building the next generation tools for systems design optimization

Leveraging optimization, control theory, game theory, domain theory, and applied category theory:

» Extend and improve current modeling & solution algorithms for multi-objective design optimization

» Promote interdisciplinarity by bridging the gap between standard optimization and co-design

Modeling and Algorithmic ) Explicitly account for strategic interactions of stakeholders, developing a theory of co-design games
Foundations

Mobility, networks, infrastructure
Strategic interactions at all levels

sl

Aerospace, automotive, production
chains, energy and data networks

Societal Applications
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Take-aways

» A new approach to co-design designed to work across fields and scales.

A
A

» Itis:

Al
Comprstind
for
g

- Compositional horizontally and hierarchically.
- Supports both data-driven and model-based components.
- Computationally tractable.

- Intellectually tractable. Aecess the book af-
https://bit.ly/3qQNrdR

» Future: extend modeling and algorithmic capabilities

» We need to account for strategic interactions of designers:
- Posetal games: A new class of games, where utilities are posets

» Future: uncertainty and computational schemes
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https://bit.ly/3qQNrdR
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Take-aways

» A new approach to co-design designed to work across fields and scales. Questions?
» It is:
- Compositional horizontally and hierarchically.
- Supports both data-driven and model-based components.
- Computationally tractable.
- Intellectually tractable.

» Future: extend modeling and algorithmic capabilities

» We need to account for strategic interactions of designers:

- Posetal games: A new class of games, where utilities are posets

» Future: uncertainty and computational schemes
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