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Designing today’s engineering systems could have positive societal impact, but is complex
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‣ Autonomous systems as a proxy for complex systems, which might have positive societal impact

Autonomy for safer and efficient mobility (Motional) Autonomous robots for space exploration (Pavone et al.)

Roboflies to monitor environments (Fuller et al.) UAVs for search and rescue tasks (Scaramuzza et al.)

Droni x sorveglianza



Need new tools to model and solve complex systems design optimization problems
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Intermodal mobility networks (NASA UAM) Networks of tankers (Signal Ocean)

‣ Societal impact of new technologies depends on their joint design with existing systems

Single components are slowly well understood, but we still lack a (formal and practical) theory 
 for the task-driven co-design of complex systems 

(New York Times)

Example - Autonomy: Heaven or hell?

30% of the cars would be enough

First- and last-mile mobility 
could make public transit  
more convenient and attractive

More affordable, sustainable



Agenda

‣ Motivation 
- New challenges of engineering design 
- Motivation from autonomy and mobility 
- Desiderata for co-design 

‣ Monotone Co-Design 
- Modeling design problems 
- Examples across domains 
- Design queries and optimization 
- From autonomy to mobility systems 

‣ Strategic interactions 
- Game theory to deal with strategic interactions 

‣ Outlook on future research 

https://gioele.science
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Driven by societal challenges, I develop efficient 
computational tools to automate the formulation and 

solution of large, complex system design problems 

Website containing all papers and more pointers:

https://gioele.science
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Driven by societal challenges, I develop efficient 
computational tools to automate the formulation and 

solution of large, complex system design problems 

Website containing all papers and more pointers:

https://gioele.science


The vision of automated co-design

task specification

“automated designer”

minimize  
(resources usage)
subject to  
(functionality constraints)

optimal 
design(s)

design options

multi-domain knowledge
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Autonomy as the frontier of complexity for the co-design of complex systems

anthropomorphization  
of 21st century 

engineering malaise

We forget why we made choices, and we are afraid to 
make changes (high failure cost). 
We need faster design cycles, nimbler execution.

OMG! 
So many components (hardware, software, …),  
and choices to make! 
Nobody understands the whole thing!

“My dear, it’s simple: you lack  
a theory of co-design!” 
Formal 
Quantitative 
Intellectually tractable

sensing

coordination

computation

actuation

energetics communication

perception

planning

learning

mapping

infrastructure

hardware
software behavior

localization

control

regulations

A fleet of autonomous 
vehicles

=
liability

invasivity

interaction
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Your system is just a component in another person’s system

Infrastructure level

Service level

Platform level

Single component design

Choice of components

Optimal infrastructure choices

Subsystem level

Optimal deployment

7 



Complex systems typically feature multi-stakeholders interactions
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Mobility 
providers 

(Jamey Tesler,  
CEO MassDOT)

Policy makers 
(Michelle Wu, 
Mayor Boston)

Academia 
Tech Developers 
(Sally Kornbluth,  
MIT president) 

Industry 
(Laura Major,  

CTO Motional)

Liability 
(Christian Mumenthaler, 

CEO SwissRe)

service design

pricing 

performance and sustainability  across scales

equity

incentives, taxes

fleet sizes

operations

technology
infrastructure  
investments

ROI

congestion

accessibility
liability

policies 
regulations

ethics



Challenges for automated co-design of complex systems

Complexity when designing complex systems

9 

Large systems 
• Many components, scales 
• Heterogeneous natures 
• Multiple objectives

sensing

coordination

computation

actuation

energetics
communication

perception

planning

learning

mapping

infrastructure

hardware
software behavior

localization

control

regulations

A fleet of autonomous 
vehicles

=
invasivity

interaction

Strategic interactions 
• Many agents 
• Heterogeneous interactions 
• Conflicts/collaborations



Desiderata for the automation of complex systems co-design
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‣ Formal, domain-independent 

‣ Computationally tractable 
- Need to compute solutions efficiently 

‣ Compositional, hierarchical 
- My system is a component of somebody else’s system 

‣ Collaborative 
- Pooling knowledge from experts across fields. 

‣ Intellectually tractable 
- Not exclusively accessible to system architects 

‣ Continuous 
- Design is not static: it should be reactive to changes in goals and contexts 



Agenda

‣ Motivation 
- New challenges of engineering design 
- Motivation from autonomy and mobility 
- Desiderata for co-design 

‣ Monotone Co-Design 
- Modeling design problems 
- Examples across domains 
- Design queries and optimization 
- From autonomy to mobility systems 

‣ Strategic interactions 
- Game theory to deal with strategic interactions 

‣ Outlook on future research 

https://gioele.science
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Complexity when designing complex systems

Large systems 
• Many components 
• Heterogeneous natures 
• Multiple objectives

Strategic interactions 
• Many agents 
• Heterogeneous interactions 
• Conflicts/collaborations

Website containing all papers and more pointers:

https://gioele.science


A new approach to multi-disciplinary engineering “co”-design

‣ A new approach to collaborative, computational, compositional, continuous design  
designed to work across fields and across scales. 

‣ Leverages domain theory, applied category theory, and optimization 
‣ Roadmap: 

- Defining “design problems” for components. 
- Modeling co-design constraints in a complex system. 
- Efficient solution to design queries.
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Access the book at: 
https://bit.ly/3qQNrdR

a “pro” box

https://bit.ly/3qQNrdR
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An abstract view of design problems

‣ Across fields, design or synthesis problems are defined with three spaces: 
- implementation space: the options we can choose from; 
- functionality space: what we need to provide/achieve; 
- requirements/costs space: the resources we need to have available;

functionality 
(provided)

costs, 
resources 
(required)

implementations

budget 
  
requirements 

dependencies 

assumptions

desired behavior 
  

specifications 

objectives 

guarantees 

conclusions

choices 

plans  

blueprints

“form”“function”

decision variables

“function”
13 



‣ Posets model standard costs in engineering                   , 
‣ … but also enable richer cost structures, with incomparable elements

Partially ordered sets model trade-offs, across fields

���0,�� ��,��

[RAL’22, CDC’22, IROS’21, ECC’21]
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Posets of rules, which induce priorities over behaviors 

b c d

a

A poset of positive-definite matrices

�1

�2

������ = 1

������ = 1

������ = 1

� ����(�) ������� � ������ ��� ���
� = �1 00 1� , � = � 3�4 �1�8�1�8 3�4 � , � = �1�2 00 2�� = �1 00 1� , � = � 3�4 �1�8�1�8 3�4 � , � = �1�2 00 2�� = �1 00 1� , � = � 3�4 �1�8�1�8 3�4 � , � = �1�2 00 2�

��� �� ����(2)

ACT Conferences

Topos Colloquium Berkeley Seminar

A poset of ACT  
talks venues



Partially ordered sets model trade-offs, across fields

A poset of sensor/algorithm pairs

[CDC’22, IROS’21] 15 



An abstract view of design problems

to maximize choices to minimize��,��� ��,���Partially 
 ordered sets

‣ Across fields, design or synthesis problems are defined with three spaces: 
- implementation space: the options we can choose from; 
- functionality space: what we need to provide/achieve; 
- requirements/costs space: the resources we need to have available;

16 



Transparent vs black-box models

‣ DP model:  direct feasibility relation between functionality and resources (“black box”) as a monotone map: 

‣ Monotonicity:  
- Lower functionality does not require more resources;  
- More resources do not provide less functionality.

���, ��� �� � �� (� �� ����(�)) � (���(�) �� �)�� �op ◊����� ����

feasibility relation d

 … a “boolean profunctor”

17 

�� �

implementationsfunctionality requirements

���� ���
‣ The “Design Problems with Implementations” model is a “transparent” model:



Co-design enables a rich class of model population techniques

‣ “Catalogues”: off-the-shelf designs.

18 



Co-design enables a rich class of model population techniques
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‣ “First-principles”: analytical relations.

mission energy ≥ mission duration x power consumption 
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Co-design enables a rich class of model population techniques

‣ “Catalogues”: off-the-shelf designs. 

‣ “First-principles”: analytical relations. 

‣ “Data-driven”, “on-demand” 
- The optimization will only ask for a sequence of data points. The model is constructed incrementally. 
- Opens the door to experiments, black-box simulations, solutions of optimization problems.

mission energy ≥ mission duration x power consumption 

18 



Design problems arise naturally in many domains, across scales
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Mobility system
demand investments

externalitiesInfrastructure level

speed [m/s] fix cost  

task AV
operational cost  

Platform level

speed [rad/s]
torque [Nm]

cost [$]
current [A]mass [kg] MotorComponent level

# agentsarea to cover [m2] Swarm operations time [s]

agents’ speed [m/s]

total cost [$]
Service level



‣ The composition of any two DPs returns a DP (closure) 

‣ Very practical tool to decompose large problems into subproblems

Design problems can be composed in various ways, preserving properties

“series”
“parallel” “feedback”

“convince two experts” 

“choose between   
two options”

� � �� � � �� � ��

� � � � ���
�
�

�
� �� ��� � � � ��

�
�

�
� �� ���

� �� � ��
� �� � � �� �

There is a category DP which is 
traced monoidal, and locally posetal

20 

Formal
Compositional/hierarchical



Multiple queries from the same design problem

‣ Two basic design queries are:

Given the functionality to be provided, 
what are the minimal resources required?

Given the resources that are available, what is  
the maximal functionality that can be provided?

  FixFunMinReq  

  FixReqMaxFun  

design problem
resource

resource

functionality

functionality
� �

21 



‣ Two basic design queries are: 

‣ The two problems are dual

Multiple queries from the same design problem

21 

Given the functionality to be provided, 
what are the minimal resources required?

Given the resources that are available, what is  
the maximal functionality that can be provided?

  FixFunMinReq  

  FixReqMaxFun  

design problem
resource

resource

functionality

functionality
� �



‣ Two basic design queries are: 

‣ We are looking for: 
- A map from functionality to upper sets of feasible resources: 
- A map from functionality to antichains of minimal resources:

Multiple queries from the same design problem

21 
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Optimization semantics

‣ This is the semantics of FixFunMinReq as a family of optimization problems.

for each node: for each edge:

chosen 
by user

objective

constraints

variables

! not convex 

! not differentiable 

! not continuous 

! not even defined on 
continuous spaces 

to minimize
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component feasibility co-design constraint
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‣ We have a complete solution: guaranteed to find the set of all optimal solutions  
(if empty, certificate of infeasibility) 

‣ The complexity is not combinatorial in the number of options for each component 
‣ The complexity depends on the complexity of the interactions: the co-design constraints

b options

O( a + b  + c)

a options c options

Compositional solution of design problem queries

‣ Suppose that we are given the map                               for all nodes in the co-design graph 

‣ Can we find the map                          for the entire graph? 

‣ Compositional approach: just need to work out the composition formulas for all operations 
                                                

‣ The set of minimal feasible resources can be obtained as the least fixed point of a monotone function in the space of anti-chain

23 
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solution( composition(a, b)) =  composition( solution(a), solution(b)) 

Computationally tractable

… a functor between a 
category of problems 
and one of solutions



A new category of upper sets

De�nition (Category Pos�)
The category Pos� consists of:
1. Objects: objects are posets;
2. Morphisms: given objects �,� � ObPos� , morphisms from �� � � � are

monotone maps of the form �� � � �Pos ��.
3. Composition of morphisms: Given morphisms �� � � �, �� � � �, their

composition � # �� � � � is given by

(� # �)� � � �Pos ��
� �

�
����(�)

��(�);

4. Identitymorphism: given an object� � ObPos� , the identitymorphism id� � � �
� is given by the application of the upper closure operator:

id��(�) �= �� {�}.

24 



From problems to solutions

25 

Interesting question:  
enriching in performance? 



User-friendly interfaces

‣ “Catalogues”: already available designs 

‣ “First-principles”: analytical relations.

capacity [ J ] mass [ kg ]

lift [ N ] power [ W ]
actuators

capacity [ J ] mass [ kg ]
cost [ USD ]

26 

… and a solver



A systematic process for task-driven co-design of complex systems

27 

‣ A new approach to co-design designed to work across fields and across scales. 

‣ What we have seen: 
- Defining “design problems” for components. 
- Modeling co-design constraints in a complex system. 
- Efficient solution to design queries.
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“Co-design diagram for a drone”

Pareto front of optimal designs

optimization 
for a search-and-rescue 

task

‣ Modeling approach 

‣ Actual implementation: 
- Coming up with the skeleton/diagram 
- Populating the models



A systematic process for task-driven co-design of complex systems

‣ A systematic modeling approach: 
- Define the task - what do we need to do?

28 
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‣ A systematic modeling approach: 
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- Functional decomposition - how to decompose the functionality?
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A systematic process for task-driven co-design of complex systems

‣ A systematic modeling approach: 
- Define the task - what do we need to do? 
- Functional decomposition - how to decompose the functionality? 
- Find components - decompose until you find components (hardware and software)

decision  
making 

state 
estimation

sensing 
 data sensor

requires

requires requires

requires
algorithm

computationrequires
requires

computer

programmers
requires

sensing  
data

estimation control
commandstate 

estimate
sensor

computer

Data/Information flow

Logical dependencies

30 



A systematic process for task-driven co-design of complex systems

‣ A systematic modeling approach: 
- Define the task - what do we need to do? 
- Functional decomposition - how to decompose the functionality? 
- Find components - decompose until you find components (hardware and software) 
- Find common resources and add them 

In autonomy, size, cost, weight, power, computation

31 



Feedback as the irreducible complexity of system design

‣Where is feedback? In the co-design constraints

32 

budget behavior

component

components must 
support behaviorsbudget must  

be sufficient 
for components

behaviors implemented 
should justify the cost

business case

engineering  problem required 
resources

provided 
resources

provided 
functionality

required 
functionality 

battery

battery must power motor

robot must  
carry battery

robot requires  
actuators to move

robot actuators

danger [kg u�m/s] 
discomfort

total computation [op/s]
total mass [kg]
total power [W]
system noise
latency [s]

fix cost [CHF]
energy externalities [kg/km]
operational cost [CHF/km]

capacity [pax/car]
range [m]

environment
speed cruise [m/s]

AV



A systematic process for task-driven co-design of complex systems

‣ Actual implementation: 
- Write a skeleton - write the structure using the formal language and the logical dependencies. 

 
 
 
Context informs level of detail:

33 

AV fix cost [USD]

emissions [kg]

speed [m/s]

AV power [W]
speed [m/s]

discomfort
danger

“back of the envelope 
calculation”

“Autonomy design”

operational cost [USD/mile]

tasks
environment

fix cost [USD]
operational cost [USD/mile]



A systematic process for task-driven co-design of complex systems

‣ Actual implementation: 
- Populate the models: 

catalogues, analytic models, data-driven

34 

Technologies don’t need to exist already -  
parametric with time

Decentralized - humans in the loop

If unsure about a component, easy 
to embed assumptions

Continuous 
Collaborative 
Intellectually tractable



Task-driven co-design of an autonomous vehicle

urban driving

follow trajectory

lateral control longitudinal control
path tracking

emergency brakingspeed tracking

[CDC’22, IROS’21, ECC’21]  35 



Task-driven co-design of an autonomous vehicle

urban driving

follow trajectory

lateral control longitudinal control
path tracking

emergency brakingspeed tracking

[CDC’22, IROS’21, ECC’21]  35 

Solving control problems via 
simulation/optimization

Catalogue of computers

Catalogue of vehiclesCatalogues of sensors/
algorithms performances



We can find optimal designs, with insights at heterogeneous abstraction levels

Average curvature
low high

Sp
ee

d 
[m

/s]

h
h

h
h

Monotonicity in task complexity

Fix an environment 
Fix a task

36 [CDC’22, IROS’21, ECC’21]  



Co-design across scales: from autonomy to mobility systems

‣ We look at the problem from the perspective of municipalities and policy makers 

‣ Need for demand-driven co-design of mobility solutions and the intermodal network they enable 

‣ Several disciplines involved (transportation science, autonomy, economics, policy-making) 

How many vehicles should we allow?
Which services to encourage?

How performant?
Which infrastructure investments?

Need for service design and regulations Need to meet sustainability goals Travel demand is changing
By 2050, 68% of population in cities Over 1,000% ride-hailing increase in 2012-22 Cities cause 60% of GHGs, 30% from mobility

‣ Mobility systems are under pressure

37 



Co-design to enable user-friendly tools to assess the impact of future mobility solutions

38 
[TNSE’23, CDC’22, IROS’21, ECC’21, ITSC’20]  

Fix environment, task

Details about software and hardware implementations, 
 in a way that was not possible before

Mobility
network

operation

served
travel

requests

average travel time [s]

Public
transit

AV costs +

+

AV network

AV distance [m] 

AV externalities [kg] 
+M externalities [kg] 

PT network 

number AVs
fix cost [USD] 
cost operation [USD/m]

externalities [kg] total
externalities

[kg]

total cost
[USD]

cost [USD] 

×

AV

ƫ09�FRVWV

+M�network

+M distance [m] 

number +MVs
fix cost [USD] 
cost operation [USD/m]

×

Micromobility

compositionality (vertical composition)

0 ESs
0 trains

2500 AVs at 35 mph 

0 trains
500 ESs

2500 AVs at 40 mph 

0 trains
2500 ESs

2500 AVs at 50 mph 
4000 FCMs

56 trains

4000 AVs at 50 mph 
4000 FCMs

112 trains

Not a unique solution!

investments

se
rv

ic
e l

ev
el

Washington D.C. in 2030
Fix demand, minimize costs

Which solution is the best?



Agenda

‣ Motivation 
- New challenges of engineering design 
- Motivation from autonomy and mobility 
- Desiderata for co-design 

‣ Monotone Co-Design 
- Modeling design problems 
- Examples across domains 
- Design queries and optimization 
- From autonomy to mobility systems 

‣ Strategic interactions 
- Game theory to deal with strategic interactions 
- Partial order games 

‣ Outlook on future research 

https://gioele.science
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Website containing all papers and more pointers:

Complexity when designing complex systems

Large systems 
• Many components 
• Heterogeneous natures 
• Multiple objectives

Strategic interactions 
• Many agents 
• Heterogeneous interactions 
• Conflicts/collaborations

https://gioele.science


Explicitly accounting for strategic interactions: towards co-design games
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‣ Different design problems belong to different stakeholders 

‣ Game theory: Multi-agent strategic decision making 
Allows one to model interactions 

‣ The notion of optimal designs extends to equilibria of designs  

‣ Towards a theory of co-design games

‣ Two milestones towards co-design games: 

Co-design features rich cost structures (posets): 
- “Posetal Games” (games with posetal preferences) 

Interactions are naturally hierarchical: 
- Mobility games via Stackelberg

[ITSC’21 (Best Paper Award), ITSC’23]

[RA-L’ 22]
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Next time!
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Behavior requirements for robots are numerous, vague, and conflicting

“Does your car have any idea 
 why my car pulled it over?”

Function

Compliance to traffic rules 
Extensive & diverse 

written by humans for humans

Safety Liability

Courtesy

ComfortCulture 
Example: Boston left

Ethics

41 



Safety for human-driven vehicles

‣ Safety (i.e., prevention of unreasonable risks of driving) is typically ensured by a mix of: 
- Certification of vehicles and drivers 
- Rules of the road 
- Enforcement by authorities and legal system 

‣ Typically, rules rely on fundamental axioms, which require interpretation 

‣ No clear specification of safety 
‣ It is legal to break the law to ensure safety

Fundamental norm in Switzerland: 
All road users must behave in such a way not to pose an obstacle or a danger to other road users
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Things that do not work well for AV behavior specification

‣Hard constraints 
- What do you do with infeasibility? 
- Whenever you consider other actors, hard to find guarantees 

‣Case analysis, finite state machines, … 
- “IF statements kill people” 

‣ Just relax! 

- Hard to re-tune, prone to overfitting 
- Lack of transparency

J = αJ1 + βJ2 + γJ3 + …
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What should we do instead?

‣ Throw the ball at other stakeholders 
‣ Incorporate our own beliefs in our algorithms 

‣ Create transparent systems 
‣ Create customizable systems 
‣ Explain issues to the public 
‣ Engage with stakeholders of the problem (e.g., regulators, liability 

companies, etc.)
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Minimum violation planning

‣ Assume that constraints will be violated, and find the alternative that least violates them 

‣ Define rules as a total order over realizations 

‣ Order rules according to priority 

‣ This is practical: 
- Allows modular definition of behavior 
- Easy to predict what the car will do 
- Easy to understand why the car did something 
- One can introduce tolerances

Performance

Comfort

Compliance

Safety Compliance

Performance

Safety

Comfort

Taxi Race car

See seminal work by Tumova, Karaman, Frazzoli

What if rules are incomparable, or indifferent?
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We capture the richness of robot behavior requirements via partial orders

‣We can use pre-orders over rules to express preferences 

‣ Pre-order over rules induces pre-order over outcomes

b and c are indifferent 

b, c, d are preferred over a 

b, c are incomparable with d  

B

A

“Rule A is more important 
than rule B” “Rule A and B are not comparable”

A B

“Rule A and B are indifferent”

A B
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Minimum violation planning using partial orders, unbridled creativity and good taste

“The way to get good ideas is to get lots of ideas,  
 and throw the bad ones away.”  ― Linus Pauling

creativity good taste

See Rulebooks work by Censi, Frazzoli, and others 47 



Minimum violation planning using partial orders, unbridled creativity and good taste

perception
world state

planning control
plan

sensors actuators
observations commands

“creativity” “good taste”

trajectory 
proposers

scorers

extractors
planworld 

state
pose-time 

graphs
prediction  

models

   planning         
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Defining and ordering rule groups for realistic scenarios

‣ Estimate: urban driving requires ~200 rules, ~20 rule groups
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Defining and ordering rule groups for realistic scenarios

‣ Estimate: urban driving requires ~200 rules, ~20 rule groups

All of this is considering ego agents… 
How do these specifications work with multiple, interacting agents?
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Posetal Games to deal with highly interactive multi-objective nature of decisions

‣ Games in short: 
- Each player has a scalar utility function 
- Based on preferences, players select an action from decision space 
- Given joint action profile of players, we obtain a game outcome for each player via a deterministic metric function 
- Equilibria are joint action profiles from which no player has interest to deviate

Related work: V.V. Rozen’18, S. Le Roux’08 50 



Posetal Games to deal with highly interactive multi-objective nature of decisions

‣ Posetal games in short: 
- Each player has a scalar utility function partially ordered preference over a set of metrics (scores, costs) 
- Based on preferences, players select an action from decision space 
- Given joint action profile of players, we obtain a game outcome for each player via a deterministic metric function 
- Equilibria are joint action profiles from which no player has interest to deviate

Technical results instantiated in trajectory driving games for urban scenarios

[RA-L’ 22] 50 



Posetal Games to deal with highly interactive multi-objective nature of decisions

‣ Posetal games extend standard notions in game theory, and 
- Provide sufficient conditions for the existence of Nash equilibria (via potential games) 
- Characterize efficiency of admissible equilibria 
- Design a formal, systematic way to leverage preference refinement (e.g., via estimation) to refine equilibria
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Agenda

‣ Motivation 
- New challenges of engineering design 
- Motivation from autonomy and mobility 
- Desiderata for co-design 

‣ Monotone Co-Design 
- Modeling design problems 
- Examples across domains 
- Design queries and optimization 
- From autonomy to mobility systems 

‣ Strategic interactions 
- Game theory to deal with strategic interactions 
- Partial order games 

‣ Outlook on future research 

https://gioele.science
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Website containing all papers and more pointers:
Modeling & Algorithmic 

Foundations Societal Applications User-friendly Tools

https://gioele.science


My lab will be building the next generation tools for systems design optimization
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Modeling and Algorithmic 
Foundations

Leveraging optimization, control theory, game theory, domain theory, and applied category theory: 

‣ Extend and improve current modeling & solution algorithms for multi-objective design optimization 
‣ Promote interdisciplinarity by bridging the gap between standard optimization and co-design 
‣ Explicitly account for strategic interactions of stakeholders, developing a theory of co-design games

Define co-design 
skeleton 

Populate the 
models with sensitive 

implementations

Ready, 
let’s solve it 

solution

Optimize choice of 
implementations, 

and number

SpecificationsQuest: We want to co-design 
a mobility system

Queries:  
FixFunMinRes

Define co-design 
skeleton 

Populate the 
models

Ready, 
let’s solve it

solution

Queries:  
FixFunMinResSpecificationsQuest: We want to co-design 

a mobility system
Example: 
Computation-aware iterative 
solution algorithms

How to best change the 
approximation of each model 
 adaptively and dynamically?  



My lab will be building the next generation tools for systems design optimization
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Modeling and Algorithmic 
Foundations

Leveraging optimization, control theory, game theory, domain theory, and applied category theory: 

‣ Extend and improve current modeling & solution algorithms for multi-objective design optimization 
‣ Promote interdisciplinarity by bridging the gap between standard optimization and co-design 
‣ Explicitly account for strategic interactions of stakeholders, developing a theory of co-design games

How to leverage negative information for design?



My lab will be building the next generation tools for systems design optimization

55 

Modeling and Algorithmic 
Foundations

Leveraging optimization, control theory, game theory, domain theory, and applied category theory: 

‣ Extend and improve current modeling & solution algorithms for multi-objective design optimization 
‣ Promote interdisciplinarity by bridging the gap between standard optimization and co-design 
‣ Explicitly account for strategic interactions of stakeholders, developing a theory of co-design games

Richer notions of functionalities and resources: 

Spatial-temporal resources Linear Logic

Poly?



My lab will be building the next generation tools for systems design optimization
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Modeling and Algorithmic 
Foundations

Leveraging optimization, control theory, game theory, domain theory, and applied category theory: 

‣ Extend and improve current modeling & solution algorithms for multi-objective design optimization 
‣ Promote interdisciplinarity by bridging the gap between standard optimization and co-design 
‣ Explicitly account for strategic interactions of stakeholders, developing a theory of co-design games

Coming up with the diagrams 
Humans in the loop

Games

Interfaces



My lab will be building the next generation tools for systems design optimization
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Modeling and Algorithmic 
Foundations

Leveraging optimization, control theory, game theory, domain theory, and applied category theory: 

‣ Extend and improve current modeling & solution algorithms for multi-objective design optimization 
‣ Promote interdisciplinarity by bridging the gap between standard optimization and co-design 
‣ Explicitly account for strategic interactions of stakeholders, developing a theory of co-design games

Uncertainty 
 
… in the interconnection of diagrams … (diagrams can be functionality/resources) 
 
… in feasibility relations …  
 
… in the functional decomposition …



My lab will be building the next generation tools for systems design optimization

Modeling and Algorithmic 
Foundations

Leveraging optimization, control theory, game theory, domain theory, and applied category theory: 

‣ Extend and improve current modeling & solution algorithms for multi-objective design optimization 
‣ Promote interdisciplinarity by bridging the gap between standard optimization and co-design 
‣ Explicitly account for strategic interactions of stakeholders, developing a theory of co-design games

Societal Applications Mobility, networks, infrastructure
Strategic interactions at all levels

Mission-driven autonomy Aerospace, automotive, production  
chains, energy and data networks
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My lab will be building the next generation tools for systems design optimization

Modeling and Algorithmic 
Foundations

Leveraging optimization, control theory, game theory, domain theory, and applied category theory: 

‣ Extend and improve current modeling & solution algorithms for multi-objective design optimization 
‣ Promote interdisciplinarity by bridging the gap between standard optimization and co-design 
‣ Explicitly account for strategic interactions of stakeholders, developing a theory of co-design games

Societal Applications Mobility, networks, infrastructure
Strategic interactions at all levels

Mission-driven autonomy Aerospace, automotive, production  
chains, energy and data networks

User-friendly Tools Collaborative, intellectually tractable Authorities & Industry Literature, workshops, classes
58 



Take-aways

‣ A new approach to co-design designed to work across fields and scales. 
‣ It is: 

- Compositional horizontally and hierarchically. 
- Supports both data-driven and model-based components. 
- Computationally tractable. 
- Intellectually tractable. 

‣ Future: extend modeling and algorithmic capabilities 

‣ We need to account for strategic interactions of designers: 
- Posetal games: A new class of games, where utilities are posets 

‣ Future: uncertainty and computational schemes
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Access the book at: 
https://bit.ly/3qQNrdR

https://bit.ly/3qQNrdR
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Take-aways

‣ A new approach to co-design designed to work across fields and scales. 
‣ It is: 

- Compositional horizontally and hierarchically. 
- Supports both data-driven and model-based components. 
- Computationally tractable. 
- Intellectually tractable. 

‣ Future: extend modeling and algorithmic capabilities 

‣ We need to account for strategic interactions of designers: 
- Posetal games: A new class of games, where utilities are posets 

‣ Future: uncertainty and computational schemes
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‣ Collaborators for the presented works 
 I’m hiring/welcoming visitors

zardini.mit.edu
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