On Taming Differentiable Logics

Reynald Affeldt, Alessandro Bruni, Matthew Daggitt, Ekaterina Komendantskaya,
Natalia Slusarz Kathrin Stark, Robert Stewart




This Work

Katya

Reynald Affeldt Alessandro Bruni Matthew Daggitt Komendantskaya

Natalia Slusarz Kathrin Stark Rob Stewart




Towards Ensuring that Neural Networks
Satisty Verification Properties

We want a neural network NV to satisfy certain properties P; for example:

€ — 6 robustness
Given a vector v, N 1s said to be € — 6 robust w.r.t v 1if:
Vx.|[x —v|,, <e=>|Nx)-Nw)|,, <9’

But: Even the most accurate neural networks fail even the most natural
verification properties, such as robustness [Fischer et al., “19].

A possible solution: Translate the desired property P into a differentiable loss For example:
function that punishes not satisfying P (Differentiable Logic/DL) [e; < el
in the tradition of property-based training for neural networks [Giunchiglia et = —max([[e;]
al., IJCAI ‘22] — [e;],0)




Towards PL Tools for Neural Networks

In Vehicle terms, n,%;@

Property in Vehicle
PN

Analysis & informative error messages

Which \ \
oneto 7 o -- s
! Counter— .

?
Hses Training —— ' example :—) Verification s Integration
: search !
Wish List "7 TTTT="
Soundness
Compositionality DL2 or PGD Marabou Agda
Shadow lifting other DL FGSM Eran Imandra
(native) etc. etc. KeymaeraX
etc.
It’'s a
trade-off!

https://vehicle-lang.github.10/tutorial/#introduction



https://vehicle-lang.github.io/tutorial/

This Talk

A common framework
for different differentiable
logics that allows to give a
uniform semantics:

LDL (Logic of
Differentiable Logic)
[Slusarz et al., LPAR 23]

4

A common framework to
compare properties of
different DLs

A mechanization® in Coq/
MathComp, allowing to easily
test out new extensions/

different approaches
[Affeldt et al., ITP ’24]

* So far: Without quantifiers




This Talk

A common framework
for different differentiable
logics that allows to give a
uniform semantics:

LDL (Logic of
Differentiable Logic)
[Slusarz et al., LPAR 23]

4

A common framework to
compare properties of
different DLs

A mechanization® in Coq/
MathComp, allowing to easily
test out new extensions/

different approaches
[Affeldt et al., ITP ’24]

* So far: Without quantifiers




Possible Differentiable Logics

- DL2 [Fischer et al., ‘19]
- STL [Varnai, Dimarogonas ‘20]

- Fuzzy logics [Krieken et al. ‘21]
+ Godel
+ Lukasiewicz
* Yager
* Product

But:

1. Only propositional fragment

2. Syntax/semantics/pragmatics partially not well-
separated

3. Lack of unified general syntax and semantics




LDL: A Logic of Differentiable Logics
Dependently Typed Version from [Affeldt et al., I'TP "24]

type Ot ::= Bool | Index n for n € N | Real | Vec n | Fun n m for n,m € N

exprB 3 p,po,...,pn = True | False
exprInd >4 = 41€N | rn<mr
exprR >rri,r2 = reR]| v | r1#ra
exprFun > f = fER"R™ | AupPo,--.,Pm)
exprVec 3Swv = weR"|fw | Vuo,...,pm)
| -p
exprde = x|[A(x:t). e || av((fc ': ?) 2;

Example: For € — § robustness, given concrete values for €/6/v/IN
both the L, norm and the right hand of the implication can be
expressed via LDL.




One Logic — Several Interpretations

Generalization
to n-ary Stror_lg
[AYPE IV, sl negation
Godel min[s]g max [s]g
Lukasiewicz | max Zae[[s]]z, a—|s|+1,0 min Zae[[s]]b a,l 1—[e]s
I N1/ ] i N1 ]
Yager max |1 — (Zae[[s]]y(l — a)p) ,0 min (ZGE[[S]]Y a”) ,1 1—[ely
product Haeﬂs]]p a fold Mz y.z+y—=zy) 0 [s]lp | 1—[e]p
DL2 ZaEIISIlDLZ a (—1)|S|+1 ) HaE[[s]]DLz @
STL ands [s]sTL Not part of )
Bool JAVEI S original definition
fer = e2] fer < e2]
o ] = —[e2] if [e1] = —[ez] of original
Originally: “SEEEIN then [e1] < [ez] definitio
[0; 00) 1— [e1]—[e=] 0 else
S max [ [edl+[eT1” ] max [1 — max [%, ] ,0]
DL2 —|[e2]pL2 — [e1]pLal —max [[e1]pr2 — [e2]pr2,0]
STL —|[e2] st — [ea]sre| [e2lstrL — [e1]sTL
Bool lei]s = [e2]B [e1]s < [e2]B
Ei amine® "% i
erdi if amin <0 v € RT (constant)
d yeeey = ,aiez_'/d-i h Omin = min [a1,...,aM]
anas [al aM] 27, _ if Gmin > 0 where i _ Q; — Qmin
Zi eV ¢ Amin
0 if Amin =0

org is analogous to andgs




This Talk

A common framework
for different differentiable
logics that allows to give a
uniform semantics:

LDL (Logic of
Differentiable Logic)
[Slusarz et al., LPAR 23]

4

A common framework to
compare properties of
different DLs

A mechanization® in Coq/
MathComp, allowing to easily
test out new extensions/

different approaches
[Affeldt et al., ITP ’24]

* So far: Without quantifiers




This Talk

A common framework
for different differentiable
logics that allows to give a
uniform semantics:

LDL (Logic of
Differentiable Logic)
[Slusarz et al., LPAR 23]

4

A common framework to
compare properties of
different DLs

A mechanization® in Coq/
MathComp, allowing to easily
test out new extensions/

different approaches
[Affeldt et al., ITP ’24]

* So far: Without quantifiers




Properties of Interest

- Soundness: If a property interprets as true/false in the DL; it 1s true in
Boolean logic

- Compositionality: Composition of negation with conjunction/disjunction;
1dempotence, commutativity, and associativity of conjunction/disjunction

- Shadow-lifting: Gradual improvement in training

The bad news: None of the existing DLs satisfies all of these requirements
[Varnai, Dimarogonas ‘20]
Conclusion: We might need to provide support for incorporating a range of
DLs for different scenarios




Properties of Interest

Compositionality

» Definition 5 (Commutativity, idempotence, and associativity of A,,). Given a DL, the

interpretation function of conjunction is commutative if for any permutation 7 of the integers
ie€{l,...,M} we have

|[/\M(P0>--->PM)]] =|[/\M(Pw(0>w-apw<M))]]

DL DL

It is idempotent and associative if we have
|[/\M(p, - ,p)ﬂ LT [ploL,
|[/\M (A, @o:p1),72) ﬂ = [[/\M (o A\, ®12)) ]|

DL DL




Properties of Interest

Soundness

Soundness. Given a DL, an expression e, and a Boolean value b, the DL 1s
sound if:

lelpr = [blpr. = [e]lr =1

Godel Yes
Lukasiewicz No ,
— In [Slusarz et al., LPAR 23]
Yager No
Product Yes ]
DL2 Yes*
STL ?

*negation-free fragment




On Soundness

- Clear if it’s on closed intervals — see [Slusarz et al., LPAR '23]

- How to even state soundness for open intervals — 1.e., for DL2/STL?

Attempt 1: Add —oo and +o as constants to the domain; keep the
previous soundness statement.

* Vacuous proof — no formula evaluates to —o or o

Attempt 2: Keep the open interval intact; re-define soundness in terms of intervals:
If the interpretation of the formula e 1s greater or equal to 0, then [e]lz = True, else
lelg = False.

« But: Negation is no longer sound. If [3 = 3] ¢/, = 0, then also [ (3 =3)]p =0

Attempt 3: Use intervals to define truth/ remove
negation.




Properties of Interest
Shadow Lifting [Varnai, Dimarogonas 20|

» Definition 6 (Shadow-lifting property [27]). The DL satisfies the shadow-lifting property if,
for any [p]pL # 0:

5|[/\M(p0,...,pi,...,pM)]l
OlpiloL

DL >0

p;j=p where i#j

holds for all 0 < i < M, where O denotes partial differentiation.




An Overview

Weak
Smoothness

Shadow-Lifting

Scale Invariance

Negation

Idempotence

Commutativity

Associativity

Soundness

Yes*

Yes

Yes

No
No

Yes

Yes

Yest

No

No

Yes

Yes

Yes [Krieken
et al. ‘21]
Yes [Krieken
et al. ‘21]
Yes [Krieken
et al. ‘21]
Yes

No

No

No

Yes

No [Cintula
et al. ‘11]
Yes [Krieken
et al. ‘21]
Yes [Krieken
et al. ‘21]

No

No

No

No

Yes

No [Klement
et al. ‘04]
Yes [Krieken
et al. ‘21]
Yes [Krieken
et al. ‘21]

No

* Smoothness in propositional case ¥ Negation-free fragment

Yes*
Yes
No

Yes
No [Cintula
et al. ‘11]

Yes [Krieken
et al. ‘21]

Yes [Krieken
et al. ‘21]

Yes

Yes

Yes [Varnai
et al. ‘20]

Yes [Varnai
et al. ‘20]

Yes

Yes [Varnai
et al. ‘20]

Yes [Varnai
et al. ‘20]

No [Varnai et
al. ‘20]

Yest




This Talk

A common framework
for different differentiable
logics that allows to give a
uniform semantics:

LDL (Logic of
Differentiable Logic)
[Slusarz et al., LPAR 23]

4

A common framework to
compare properties of
different DLs

A mechanization® in Coq/
MathComp, allowing to easily
test out new extensions/

different approaches
[Affeldt et al., ITP ’24]

* So far: Without quantifiers




This Talk

A common framework
for different differentiable
logics that allows to give a
uniform semantics:

LDL (Logic of
Differentiable Logic)
[Slusarz et al., LPAR 23]

4

A common framework to
compare properties of
different DLs

A mechanization® in Coq/
MathComp, allowing to easily
test out new extensions/

different approaches
[Affeldt et al., ITP '24]

* So far: Without quantifiers




© 0 N O oo W N

I o S S S = S U
S ok W N H O

Syntax

Inductive flag

:= def | undef.

Inductive 1dl_type :=
Bool_T of flag | Index_T of nat | Real_T | Vector_T of nat | Fun_T of nat & nat.

Definition Bool_T_undef := Bool_T undef.
Definition Bool_T_def := Bool_T def.
Inductive comparison := cmp_le | cmp_eq.

Inductive expr :

1dl_real
1d1_bool
1d1_idx
1d1l_vec
1d1_and
1d1l_or
1d1l_not
1d1_cmp
1d1_fun
1d1_app

1dl_type -> Type :=

: R -> expr Real_T

: forall p, bool -> expr (Bool_T p)

: forall n, 'I_n -> expr (Index_T n)

: forall n, n.-tuple R -> expr (Vector_T n)

: forall x, seq (expr (Bool_T x)) -> expr (Bool_T x)

: forall x, seq (expr (Bool_T x)) -> expr (Bool_T x)

: expr Bool_T def -> expr Bool_T def

: forall x, comparison -> expr Real T -> expr Real_T -> expr (Bool_T x)
: forall n m, (n.-tuple R -> m.-tuple R) -> expr (Fun_T n m)

: forall n m, expr (Fun_T n m) -> expr (Vector_T n) -> expr (Vector_T m)
1d1_lookup :

forall n, expr (Vector_T n) -> expr (Index_T n) -> expr Real_T.




0 N O o A W N =

Translation

Definition type_translation (t : 1dl_type) : Type :=
match t with

| Bool_ T x => R

Real T => R

Vector_T n => n.-tuple R

Index_ T n => 'I_n

Fun_ T n m => n.-tuple R -> m.-tuple R

end.

Fixpoint stl_translation {t} (e : expr t) : type_translation t :
match e in expr t return type_translation t with
| 1dl_and _ (e0 :: s) => let A map stl_translation s in
let a0l stl_translation e0 in
let a_min := \big[minr/a0]_(i <- A) i

if a_min < O then stl_and_1t0 (a0 ::
if a_min > O then stl_and_gtO (a0 ::
0

| ~~ E1 => - {[ E1 ]}

| E1 “<= E2 => {f E2 1} — 1L EL 1F

(* see [29] for omitted connectives *)
end where "{[ e ]}" := (stl_translation e).

in
A) else
A) else




On the Coq Formalization
Overview

Easily fixable

gaps

File Contents

Additions to MATHCOMP libraries

4,

mathcomp_extra.v Lemmas itera/cd min/max, etc.
analysis_extra.v L’Hopital’s rule, Cauchy’s MVT (§ 5.3), etc.

Generic logic and generic definitions of properties

1dl.v LDL syntax and semantics(f.%

wouadow-lifting (Sect. 5.1) 417
Zcs of concrete logics

Soundness, logical and geometric prone=

dl2.v DL2: logical (§ 4), geometric (§ 5.2)

fuzzy.v Godel, Lukasiewicz, Yager, product:
logical (§ 4), geometric (§ 5.2)

stl.v STL; logical (§ 4), geometric (§ 5.4)

Alternative formalisations of logical properties/ soundness usinag extended reals
dl2_ereal.v DL2: logical (§ 4.2)
stl_ereal.v STL: logical (§ 4.2)

Total

https://github.com/ndslusarz/formal LDL

Translate to
corresponding
properties of
underlying
definitions

Helped in
closing
previous gaps

Helped in finding
the right
definitions


https://github.com/ndslusarz/formal_LDL

This Talk

Future Work

A common framework
for different differentiable
logics that allows to give a
uniform semantics:

LDL (Logic of
Differentiable Logic)
[Slusarz et al., LPAR 23]

Connection of
logics with the
logics of Lawvere

quantale

Goal: A generic framework
in which logical/geometric

properties of different DLs
can be formalized/proven.

A common framework to
compare properties of
different DLs

Revised
negation

A mechanization® in Coq/
MathComp, allowing to easily
test out new extensions/
different approaches

[Affeldt et al., ITP '24]

* So far: Without quantifiers

In progress




The Question of Quantifiers

- Motivation: More expressive/required to internally interpret different forms of
robustness

« On finite domains such as Bool/ Index n (e.g., [Krieken et al. ‘21]):

. se finitely com osed conjunction an junction;
81ven[fy p d,}, haJve Vx:T.e ex/dl] elx /d,ll

+ Analogously for Jdx : 1.e and d1s3unct10n.

- Infinite domains

* [Fischer et al. ‘19]: Interpret universally quantified formulae via expectation
maximization methods

- In [Slusarz et al., LPAR ’23]: Suggestion of a language-independent quantifier

[vx : 7.e]}"®" = Epin [ (Ay. [e]V2T* YD) (Q[x]) ]
where Emin [9(X)] = lim Jeewy  Px()g(x)dx

.. and existential quantifier as maximum.

« ... to be continued




Any Questions?

Published Papers

Logic of differentiable logics: Towards a
uniform semantics of DL
https://arxiv.org/pdf/2303.10650
Natalia Slusarz, Ekaterina
Komendantskaya, Matthew L Daggitt,
Robert Stewart, KS (LPAR ’'23)

Taming Differentiable Logics with Coq
Formalisation Reynald Affeldt,
Alessandro Bruni, Ekaterina

Komendantskaya, Natalia Slusarz, KS
(ITP’24)

Coq Development
https://github.com/ndslusarz/formal L
DL

Parts of the project are looking for a PhD student:

Vacancy: PhD in Computer Science
Title: Formal Verification of Al Interfaces

Advisors: Ekaterina Komendantskaya (Southampton University, UK), Alessandro
Bruni (IT University of Copenhagen, Denmark), Reynald Affeldt (AIST, Japan)

Start Date: As soon as the right candidate is found

Location: Southampton University, UK; with collaborative visits involving
researchers at AIST, Japan and IT University of Copenhagen, Denmark.



https://arxiv.org/abs/2303.10650
https://arxiv.org/abs/2303.10650
https://arxiv.org/pdf/2303.10650
https://arxiv.org/abs/2403.13700
https://arxiv.org/abs/2403.13700
https://github.com/ndslusarz/formal_LDL
https://github.com/ndslusarz/formal_LDL

