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Towards Ensuring that Neural Networks
Satisty Verification Properties

We want a neural network NV to satisfy certain properties P; for example:

€ — 6 robustness
Given a vector v, N 1s said to be € — 6 robust w.r.t v 1if:
Vx.|[x —v|,, <e=>|Nx)-Nw)|,, <9’

But: Even the most accurate neural networks fail even the most natural
verification properties, such as robustness [Fischer et al., “19].

A possible solution: Translate the desired property P into a differentiable loss For example:
function that punishes not satisfying P (Differentiable Logic/DL) [e; < el
in the tradition of property-based training for neural networks [Giunchiglia et = —max([[e;]
al., IJCAI ‘22] — [e;],0)




Towards PL Tools for Neural Networks

In Vehicle terms, n,%;@
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https://vehicle-lang.github.10/tutorial/#introduction
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Possible Differentiable Logics

- DL2 [Fischer et al., ‘19]
- STL [Varnai, Dimarogonas ‘20]

- Fuzzy logics [Krieken et al. ‘21]
+ Godel
+ Lukasiewicz
* Yager
* Product

But:

1. Only propositional fragment

2. Syntax/semantics/pragmatics partially not well-
separated

3. Lack of unified general syntax and semantics




LDL: A Logic of Differentiable Logics
Dependently Typed Version from [Affeldt et al., I'TP "24]

type Ot ::= Bool | Index n for n € N | Real | Vec n | Fun n m for n,m € N

exprB 3 p,po,...,pn = True | False
exprInd >4 = 41€N | rn<mr
exprR >rri,r2 = reR]| v | r1#ra
exprFun > f = fER"R™ | AupPo,--.,Pm)
exprVec 3Swv = weR"|fw | Vuo,...,pm)
| -p
exprde = x|[A(x:t). e || av((fc ': ?) 2;

Example: For € — § robustness, given concrete values for €/6/v/IN
both the L, norm and the right hand of the implication can be
expressed via LDL.




One Logic — Several Interpretations

Generalization
to n-ary Stror_lg
[AYPE IV, sl negation
Godel min[s]g max [s]g
Lukasiewicz | max Zae[[s]]z, a—|s|+1,0 min Zae[[s]]b a,l 1—[e]s
I N1/ ] i N1 ]
Yager max |1 — (Zae[[s]]y(l — a)p) ,0 min (ZGE[[S]]Y a”) ,1 1—[ely
product Haeﬂs]]p a fold Mz y.z+y—=zy) 0 [s]lp | 1—[e]p
DL2 ZaEIISIlDLZ a (—1)|S|+1 ) HaE[[s]]DLz @
STL ands [s]sTL Not part of )
Bool JAVEI S original definition
fer = e2] fer < e2]
o ] = —[e2] if [e1] = —[ez] of original
Originally: “SEEEIN then [e1] < [ez] definitio
[0; 00) 1— [e1]—[e=] 0 else
S max [ [edl+[eT1” ] max [1 — max [%, ] ,0]
DL2 —|[e2]pL2 — [e1]pLal —max [[e1]pr2 — [e2]pr2,0]
STL —|[e2] st — [ea]sre| [e2lstrL — [e1]sTL
Bool lei]s = [e2]B [e1]s < [e2]B
Ei amine® "% i
erdi if amin <0 v € RT (constant)
d yeeey = ,aiez_'/d-i h Omin = min [a1,...,aM]
anas [al aM] 27, _ if Gmin > 0 where i _ Q; — Qmin
Zi eV ¢ Amin
0 if Amin =0

org is analogous to andgs
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Properties of Interest

- Soundness: If a property interprets as true/false in the DL; it 1s true in
Boolean logic

- Compositionality: Composition of negation with conjunction/disjunction;
1dempotence, commutativity, and associativity of conjunction/disjunction

- Shadow-lifting: Gradual improvement in training

The bad news: None of the existing DLs satisfies all of these requirements
[Varnai, Dimarogonas ‘20]
Conclusion: We might need to provide support for incorporating a range of
DLs for different scenarios




Properties of Interest

Compositionality

» Definition 5 (Commutativity, idempotence, and associativity of A,,). Given a DL, the

interpretation function of conjunction is commutative if for any permutation 7 of the integers
ie€{l,...,M} we have

|[/\M(P0>--->PM)]] =|[/\M(Pw(0>w-apw<M))]]

DL DL

It is idempotent and associative if we have
|[/\M(p, - ,p)ﬂ LT [ploL,
|[/\M (A, @o:p1),72) ﬂ = [[/\M (o A\, ®12)) ]|

DL DL




Properties of Interest

Soundness

Soundness. Given a DL, an expression e, and a Boolean value b, the DL 1s
sound if:

lelpr = [blpr. = [e]lr =1

Godel Yes
Lukasiewicz No ,
— In [Slusarz et al., LPAR 23]
Yager No
Product Yes ]
DL2 Yes*
STL ?

*negation-free fragment




On Soundness

- Clear if it’s on closed intervals — see [Slusarz et al., LPAR '23]

- How to even state soundness for open intervals — 1.e., for DL2/STL?

Attempt 1: Add —oo and +o as constants to the domain; keep the
previous soundness statement.

* Vacuous proof — no formula evaluates to —o or o

Attempt 2: Keep the open interval intact; re-define soundness in terms of intervals:
If the interpretation of the formula e 1s greater or equal to 0, then [e]lz = True, else
lelg = False.

« But: Negation is no longer sound. If [3 = 3] ¢/, = 0, then also [ (3 =3)]p =0

Attempt 3: Use intervals to define truth/ remove
negation.




Properties of Interest
Shadow Lifting [Varnai, Dimarogonas 20|

» Definition 6 (Shadow-lifting property [27]). The DL satisfies the shadow-lifting property if,
for any [p]pL # 0:

5|[/\M(p0,...,pi,...,pM)]l
OlpiloL

DL >0

p;j=p where i#j

holds for all 0 < i < M, where O denotes partial differentiation.




An Overview
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Syntax

Inductive flag

:= def | undef.

Inductive 1dl_type :=
Bool_T of flag | Index_T of nat | Real_T | Vector_T of nat | Fun_T of nat & nat.

Definition Bool_T_undef := Bool_T undef.
Definition Bool_T_def := Bool_T def.
Inductive comparison := cmp_le | cmp_eq.

Inductive expr :

1dl_real
1d1_bool
1d1_idx
1d1l_vec
1d1_and
1d1l_or
1d1l_not
1d1_cmp
1d1_fun
1d1_app

1dl_type -> Type :=

: R -> expr Real_T

: forall p, bool -> expr (Bool_T p)

: forall n, 'I_n -> expr (Index_T n)

: forall n, n.-tuple R -> expr (Vector_T n)

: forall x, seq (expr (Bool_T x)) -> expr (Bool_T x)

: forall x, seq (expr (Bool_T x)) -> expr (Bool_T x)

: expr Bool_T def -> expr Bool_T def

: forall x, comparison -> expr Real T -> expr Real_T -> expr (Bool_T x)
: forall n m, (n.-tuple R -> m.-tuple R) -> expr (Fun_T n m)

: forall n m, expr (Fun_T n m) -> expr (Vector_T n) -> expr (Vector_T m)
1d1_lookup :

forall n, expr (Vector_T n) -> expr (Index_T n) -> expr Real_T.
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Translation

Definition type_translation (t : 1dl_type) : Type :=
match t with

| Bool_ T x => R

Real T => R

Vector_T n => n.-tuple R

Index_ T n => 'I_n

Fun_ T n m => n.-tuple R -> m.-tuple R

end.

Fixpoint stl_translation {t} (e : expr t) : type_translation t :
match e in expr t return type_translation t with
| 1dl_and _ (e0 :: s) => let A map stl_translation s in
let a0l stl_translation e0 in
let a_min := \big[minr/a0]_(i <- A) i

if a_min < O then stl_and_1t0 (a0 ::
if a_min > O then stl_and_gtO (a0 ::
0

| ~~ E1 => - {[ E1 ]}

| E1 “<= E2 => {f E2 1} — 1L EL 1F

(* see [29] for omitted connectives *)
end where "{[ e ]}" := (stl_translation e).

in
A) else
A) else




On the Coq Formalization
Overview

Easily fixable

gaps

File Contents

Additions to MATHCOMP libraries

4,

mathcomp_extra.v Lemmas itera/cd min/max, etc.
analysis_extra.v L’Hopital’s rule, Cauchy’s MVT (§ 5.3), etc.

Generic logic and generic definitions of properties

1dl.v LDL syntax and semantics(f.%

wouadow-lifting (Sect. 5.1) 417
Zcs of concrete logics

Soundness, logical and geometric prone=

dl2.v DL2: logical (§ 4), geometric (§ 5.2)

fuzzy.v Godel, Lukasiewicz, Yager, product:
logical (§ 4), geometric (§ 5.2)

stl.v STL; logical (§ 4), geometric (§ 5.4)

Alternative formalisations of logical properties/ soundness usinag extended reals
dl2_ereal.v DL2: logical (§ 4.2)
stl_ereal.v STL: logical (§ 4.2)

Total

https://github.com/ndslusarz/formal LDL

Translate to
corresponding
properties of
underlying
definitions

Helped in
closing
previous gaps

Helped in finding
the right
definitions


https://github.com/ndslusarz/formal_LDL
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Future Work

A common framework
for different differentiable
logics that allows to give a
uniform semantics:

LDL (Logic of
Differentiable Logic)
[Slusarz et al., LPAR 23]

Connection of
logics with the
logics of Lawvere

quantale

Goal: A generic framework
in which logical/geometric

properties of different DLs
can be formalized/proven.

A common framework to
compare properties of
different DLs

Revised
negation

A mechanization® in Coq/
MathComp, allowing to easily
test out new extensions/
different approaches

[Affeldt et al., ITP '24]

* So far: Without quantifiers

In progress




The Question of Quantifiers

- Motivation: More expressive/required to internally interpret different forms of
robustness

« On finite domains such as Bool/ Index n (e.g., [Krieken et al. ‘21]):

. se finitely com osed conjunction an junction;
81ven[fy p d,}, haJve Vx:T.e ex/dl] elx /d,ll

+ Analogously for Jdx : 1.e and d1s3unct10n.

- Infinite domains

* [Fischer et al. ‘19]: Interpret universally quantified formulae via expectation
maximization methods

- In [Slusarz et al., LPAR ’23]: Suggestion of a language-independent quantifier

[vx : 7.e]}"®" = Epin [ (Ay. [e]V2T* YD) (Q[x]) ]
where Emin [9(X)] = lim Jeewy  Px()g(x)dx

.. and existential quantifier as maximum.

« ... to be continued




Any Questions?

Published Papers

Logic of differentiable logics: Towards a
uniform semantics of DL
https://arxiv.org/pdf/2303.10650
Natalia Slusarz, Ekaterina
Komendantskaya, Matthew L Daggitt,
Robert Stewart, KS (LPAR ’'23)

Taming Differentiable Logics with Coq
Formalisation Reynald Affeldt,
Alessandro Bruni, Ekaterina

Komendantskaya, Natalia Slusarz, KS
(ITP’24)

Coq Development
https://github.com/ndslusarz/formal L
DL

Parts of the project are looking for a PhD student:

Vacancy: PhD in Computer Science
Title: Formal Verification of Al Interfaces

Advisors: Ekaterina Komendantskaya (Southampton University, UK), Alessandro
Bruni (IT University of Copenhagen, Denmark), Reynald Affeldt (AIST, Japan)

Start Date: As soon as the right candidate is found

Location: Southampton University, UK; with collaborative visits involving
researchers at AIST, Japan and IT University of Copenhagen, Denmark.
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