How to Make Mathematicians
Into Programmers anavice versa)

Will Crichton

Assistant Professor, Brown University

Mathematicians working on paper

A CLASSIFICATION OF IMMERSIONS OF THE
TWO-SPHERE

BY
STEPHEN SMALE

An immersion of one C! differentiable manifold in another is a regular
map (a C' map whose Jacobian is of maximum rank) of the first into the
second. A homotopy of an immersion is called regular if at each stage it is
regular and if the induced homotopy of the tangent bundle is continuous.
Little is known about the general problem of classification of immersions
under regular homotopy. Whitney [5] has shown that two immersions of a
k-dimensional manifold in an #-dimensional manifold, »=2k+2, are regu-

L N formalized
\.@? mathematics

Developers working with weak type systems

1462 - /* Read type and payload length first x/
1463 - hbtype = *xp++;
1464 - n2s(p, payload);
1465 - pl = p;
1466 -
1467 if (s—->msg_callback) 1462 if (s—>msg_callback)
1468 s—>msg_callback(@, s->version, 1463 s—>msg_callback(@, s->version,
TLS1_RT_HEARTBEAT, TLS1_RT_HEARTBEAT,
1469 &s—->s3->rrec.datal@], s—>s3- 1464 &s—->s3->rrec.datal@], s—>s3-
>rrec.length, >rrec.length,
1470 s, s—>msg_callback_arg); 1465 s, s—>msg_callback_arg);
1471 1466
1467 + /* Read type and payload length first x/
1468 + if (1 + 2 + 16 > s—>s3->rrec.length)
1469 + return @; /* silently discard */
1470 + hbtype = *p++;
1471 + n2s(p, payload);

Project BEverest

7 —
=
T —

Introduction

1 Loops

2 I.ocal theory of
convex integration

3 Global theory of
open and ample
relations

Alocal sphere
eversion

B From local to
global

Dependency graph

The sphere eversion project

Patrick Massot Oliver Nash Floris van Doorn
Introduction
1 Loops
1.1 Introduction
1.2 Surrounding points
1.3 Constructing loops
2 Local theory of convex integration
2.1 Key construction
2.2 The main inductive step
2.3 Ample differential relations
3 Global theory of open and ample relations
3.1 Preliminaries
3.2 First order differential relations
3.3 The h-principle for open and ample differential relations
A Local sphere eversion
B From local to global

formalized
mathematics

Papers People Inthe News Related Projects

Carnegie ?,.

. Microsoft Research - Inria

TRVt 2
Microsoft s Mellon v
. h%“ University JOINT CENTRE

We are a team of researchers and engineers from several organizations, including Microsoft Research, Carnegie Mellon
University, INRIA, and the MSR-INRIA joint center.

Provably Secure Communication Software

— damazon | science B Feedback Q

AUTOMATED REASONING

How the Lean language brings
math to coding and coding to

[T1dir

Uses of the functional programming language include formal
mathematics, software and hardware verification, Al for math
and code synthesis, and math and computer science education.

By Leo de Moura [* Share
August 16, 2024

How the Lean language brings
math to coding and coding to

[Tdtn

Uses of the functional programming language include formal
mathematics, software and hardware verification, Al for math
and code synthesis, and math and computer science education.

By Leo de Moura [Share
August 16, 2024

How to Make Mathematicians
Into Programmers anavice versa)

Learning Lean

< 2 Cc 2% adam.math.hhu.de/#/g/leanprover-community/nng4/world/Addition/level/2 w e} @

n World: Addition World Level 2 /5 : succ_add

Oh no! On the way to add_comm, a Tactics
wild succ_add appears. succ_add
a b is the proof that (succ a) + b
= succ (a + b) for a and b
numbers. This result is what's
standinginthe way of x + y = y

+ x . Again we have the problem induction
that we are adding b to things, f] W
so we need to use induction to
split into the cases where b = ¢
and b is a successor.
Definitions
+
Theorem succ_add : For all natural numbers a, b, we have succ(a) + b = N
succ(a + b).
Theorems
;Actlve Goal * + 012 Peano ~ <
Objects: add_succ add_zero
ab:N
succ_eqg_add_one zero_add
Goal: _eq_add_ _
succa+ b =succ(a+Db)

ARG | #ecoue]

https://worrydream.com/LearnableProgramming/

n World: Addition World Level 2 /5 : succ_add - —

Oh no! On the way to Tactics
add_comm , a wild succ_add TaSks:

appears. succ_add a b isthe
proof that (succ a) + b = succ . ?
(a + b) for a and b numbers. Wh t p bl I I g

This result is what's standing in ° a ro em am SO Vln *

thewayof x + y =y + x. induction

Again s have the problen What is the state of my solution? |- "

that we are adding b to things,

so we need to use induction to

split into the cases where b = ® What tactic ShOUId I use?

@ and b is a successor.

o What theorem should | use?

Definitions
1 +
o What have | tried already?
N
Theorems
Theorem succ_add : For all natural numbers a, b, we have succ(a) + b =
succ(a 4+ b). * ; 012 Peano <
add_comm add_succ
Active Goal
add_zero succ_add
ObjeCtS: succ_eqg_add_one zero_add
ab:N
Goal:

succa + b =succ(a+b)

Sevee e | #eweoue]

@

n World: Addition World Level 2 /5 : succ_add - —

Oh no! On the way to add_comm, a Wh h h Id I Tactics
wild succ_add appears. succ_add at t eorem S ou use?
a b is the proof that (succ a) + b

= succ (a + b) for a and b Which theorem defines equa"ty over

numbers. This result is what's

standingintheway of x+ v -y @M eXpression that unifies with a sub- =
+ x . Again we have the problem eXpI'eSSiOH of the goal? induction

that we are adding b to things, ” W
so we need to use induction to
split into the cases where b = o
and b is a successor. Theorem succ_add : For all natural numbers a, b, we have succ(a) + b =
succ(a + b).
You might want to think about
d) i) Active Goal
whether inductionon a or b is , Definitions
the best idea. ObjeCtS'
) +
ab:N
N
Goal:
succa+b=succ(a+b)
Theorems
induction b with b hb € Retry * + 012 Peano ~ <

add_comm add_succ

Active Goal Goal 2
add_zero succ_add

Objects: succ_eq_add_one zero_add
a:N

Goal:

succ a + 0 = succ (a + 0)

I FT

n World: Addition World Level 2 /5 : succ_add —

Oh no! On the way to add_comm, a add_succ X
wild succ_add appears. succ_add

a b is the proof that (succ a) + b (ad:N) : a+ MyNat.succ d

= succ (a + b) for a and b = MyNat.succ (a + d)

numbers. This result is what's

standingintheway of x + y = y add_succ a b is the proof of a +

+ x . Again we have the problem succ b = succ (a + b).

that we are adding b to things,
so we need to use induction to
split into the cases where b = o

and b is a successor. Theorem succ_add : For all natural numbers a, b, we have succ(a) + b =
succ(a + b).

You might want to think about .

g))) Active Goal

whether inductionon a or b is —————

the best idea. Objects:
ab:N
Goal:

succa+b=succ(a+b)

induction b with b hb € Retry

Active Goal Goal 2

Objects:
a:N

Goal:

succ a + 0 = succ (a + 0)

I FT

n World: Addition World Level 2 /5 : succ_add —

Oh no! On the way to add_comm, a Theorems Tactics
wild succ_add appears. succ_add * 4+ 012 Peano ~ <
a b is the proof that (succ a) + b -
= succ (a + b) for a and b a+b=Db+a
numbers. This result is what's suce n =n + 1
standingintheway of x + y = y
+ x . Again we have the problem succ a + b = succ (a + b) induction
that we are adding b to things, a + succ d = succ (a + d) " w
so we need to use induction to O+n=nlln+o=n
split into the cases where b = o
and b is a successor. Theorem succ_add : For all natural numbe
succ(a + b). Tactics
induction | [rw | [rfl
You might want to think about)
) i) Active Goal
whether inductionon a or b is ————— Definitions
s i B, Objects: Definitions .
ab:N + | N
Goal: h
succa+b=succ(a+b)
Theorems
induction b with b hb ' t 012 Peano ~ <

add_comm add_succ

Active Goal Goal 2

| —— add_zero succ_add
ObjeCtS: succ_eqg_add_one zero_add
a: N

Goal:

succ a + 0 = succ (a + 0)

L —

oc_add T I =

* + 012 Peano ™ <

a+b=Db+ a

Key ideas: XEEIET)

succ a + b = succ (a + b)

induction
a + succ d = succ (a + d) i W
° O+ n=n n+®o=n
Memory vs. perception
AN /\[\\
e °)®) Tactics
induction | {rw | |rfl
See: “The Role of W(?rklng Memo.ry in Program Tracing Definitions
“A Representational Analysis of Numeration Systems” Definitions
+
+ [|N
N
C t I d th Theorems
Ognl |Ve Oa eory * + 012 Peano * <
See: John Sweller's publications add_comm | | add_succ

add_zero succ_add

succ_eqg_add_one zero_add

inding in the way of
+ + @HAdd.hAdd NN N instHAdd a0 : N

RUBPIES computes the sum of a and b . The meaning of this notation is type-

i dependent.

things, su we rneeu

use induction to

i+ int+A +hAa AA~cAA~

succ a + 0 = succ (a + 0)

T

succ_add X

(a b : N) : MyNat.succ a + b = MyNat.succ (a + b)

succ_add a b is a proof that succ a + b = succ (a + b) .

| See: “The Structure and Interpretation of the Computer Science Curriculum”
Language Ievels How to Design Programs

“declarative” “procedural”

Dependent types Decompose a problem
Common theorems Find a theorem
Tactics Read the docs

\ /

What concepts and skills does a
person heed to effectively use Lean?

\ /

Undergrad math major Model a domain
Professional C programmer Prove a theorem
Experienced Coq dev Debug a failure

1. Are learners actually learning?
2. What concepts/skills are missing?

Natural Number Game Theorem Proving in Lean

Concepts Skills Concepts Skills
o Syntax o Generating syntax e« Syntax o ?
e Props & tactics » Selecting tactics o Dependent types
o Common tactics » Finding theorems Term language
 Basic arithmetic e Proof Propositional logic
theorems decomposition o Term vs. tactic
« Formalizable proofs
statements/proofs

o Forall/exists
quantifiers

o Module system

e Inductive types &
derived principle

o Mutual recursion
e Tvne eclaccac and

o o 8 References and Borrowing - = X +

&

Cc 25 rust-book.cs.brown.edu/ch04-02-references-and-borrowing.htmi Q W) @

= 4 Q The Rust Programming Language 8 O

To tie this back to memory safety, let's bring references into the mix. Say we created a
reference to a vector's heap data. Then that reference can be invalidated by a push, as

simulated below:
(=] (2]
let mut v: Vec<i32> = vec![1l, 2, 3];
?

let num: &i32 = &v[2];

v.push(4);

println! ("Third element is {}", *num);

L L2

Stack Heap Stack Heap

main _///,_,123 ma-in _If—>1234
\Y o \Vj ()
num @ num X

undefined behavior: pointer used
after its pointee is freed

Stack Heap
main f 1234
\Y/ ([J

num (%

e’

https://rust-book.cs.brown.edu

s/ Qa The Rust Programming Language & ©

called lifetime parameters. We will explain that feature later in Chapter 10.3,
"Validating References with Lifetimes". For now, it's enough to know that: (1)

Experiment Introduction

The Rust Programming Language

Foreword _ , o

input/output references are treated differently than references within a
Introduction function body, and (2) Rust uses a different mechanism, the F permission, to
1. Getting Started check the safety of those references.

1.1. Installation To see the F permission in another context, say you tried to return a

1.2. Hello, World! reference to a variable on the stack like this:
1.3. Hello, Cargo!

2. Programming a Guessing Game fn return_a_string() -> &String {

let s = String::from("Hello world");

3. Common Programming Concepts
let s_ref = &os;

3.1. Variables and Mutability s ref
F -—

3.2. Data Types }

3.3. Functions
This program is unsafe because the reference &s will be invalidated wifen

return_a_string returns. And Rust will reject this program with a sigilar
missing lifetime specifier error. Now you can understand thaggrror
means that s_ref is missing the appropriate flow permissions.

3.4. Comments
3.5. Control Flow

4. Understanding Ownership
4.1. What is Ownership?

4.2. References and Borrowing
4.3. Fixing Ownership Errors Quiz 3 questions
4.4. The Slice Type

4.5. Ownership Recap Start

B llcino Striircte tn Striictiire Ralatad Nata

Quiz Question1/3

Question 1 &

Determine whether the program will pass the compiler. If it passes, write the
expected output of the program if it were executed.

fn dincr(n: &mut i32) {
*xNn += 1;

}

fn main() {
let mut n = 1;
incr (&n);
println! ("{n}");

© 00 O U & WIN B

}

Response

This program: O DOES compile. OR = O does NOT compile

Submit

r-

Question Summary

Quiz

|

|

ch19-01-unsafe-rust

ch11-02-running-tests

ch04-01-ownership-sec2-mo...

ch04-03-fixing-ownership-er...

ch17-05-design-challenge-tr...

ch15-02-deref
ch07-04-use
ch16-01-threads

ch06-04-inventory

ch17-05-design-challenge-di...

ch17-04-inventory

ch17-05-design-challenge-re...

Quiz ch15-02-deref / Question 1

Question

Question 1

Determine whether the program will pass the compiler. If it passes, write the
expected output of the program if it were executed. If the program does not pass,
indicate the last line number involved in the compiler error.

1 use std::ops::Deref;

2

3 #[derive(Clone, Copy)]

4 struct AccesslLogger(i32);

5

6 impl Deref for AccesslLogger {
7 type Target = 132;

8 fn deref(&self) —> &Self::Target {
9 printin!("deref");

10 &self.0

11 1

Version

Question

Avg question score A
Confidence Interval

0.1 03 04 06 08 1.0

0.07 [0.05 - 0.08]
0.07 [0.06 - 0.07]
0.07 [0.07 - 0.08]
0.09 [0.09 - 0.10]
0.10 [0.08 - 0.12]
0.11 [0.09 - 0.12]
0.12 [0.11 - 0.13]
0.12 [0.11 - 0.13]
0.15 [0.14 - 0.16]
0.16 [0.13 - 0.19]
0.17 [0.15 - 0.18]
0.17 [0.15 - 0.20]
Answers

N =766

This program does not compile.

The last line number in the error is:

N =548
This program does compile.

The output of this program will be:

0 -1

56

1373

4090

8240

5777

874

1918

5403

3182

7200

755

1912

1064

Table 1. Effects of interventions on question accuracy. p-values are bolded if they are under the 0.05 signifi-
cance threshold. p-values are corrected for multiple comparisons with the Benjamini—-Hochberg method [1995].

Description Before N | After N d P
Semver dependency deduplication 0.18 593 | 0.70 543 1.24 | <0.001
Rust lacks inheritance 0.29 234 | 0.74 3511 1.03 | <0.001
Match expressions and ownership 0.39 522 | 0.74 4970 0.78 | <0.001
Send vs. Sync 0.25 639 0.49 538 0.52 | <0.001
String slice diagram 0.23 575 | 0.43 7188 0.41 | <0.001
Heap allocation with strings 0.13 265 | 0.27 3636 0.32 | <0.001
Rules of lifetime inference 0.26 177 | 0.40 2887 0.29 | <0.001
Traits vs. templates 0.38 234 0.49 3511 0.21 | 0.002
Trait objects and type inference 0.09 654 | 0.18 544 0.27 | <0.001
Refutable patterns 0.17 549 | 0.25 499 0.21 | 0.001
Declarative macros take items 0.19 340 | 0.23 312 0.09 | 0.253
Derefencing vector elements 0.15 311 | 0.18 4001 0.07 | 0.253
Grand average: 0.45

Anyone can do this!

Crichton and Krishnamurthi. “Profiling Programming Language Learning” OOPSLA ‘24

20000

15000

10000

5000

Number of readers

Kind
B Trier
Dabbler

\ |

1 2 3,4 567 8 910111213141516171819
Chapter of last answer

Chapter on ownership

Crichton and Krishnamurthi. “Profiling Programming Language Learning” OOPSLA ‘24

Steps to improving ownership pedagogy

1. Collect frequent StackOverflow questions about ownership

2. Ask Rust learners to solve these questions

3. Qualitatively analyze their misconceptions

4. Develop new materials to address the specific misconceptions
5. Deploy the materials in the online textbook

6. Measure effect on those same questions

Anyone can do this (with enough effort)!

Crichton, Gray, and Krishnamurthi. “A Grounded Conceptual Model for Ownership Types in Rust” OOPSLA ‘23

€5 new members > Understanding newbie questions AUG 7

Will Crichton 1:40 PM

Hi folks, | am giving a Topos Institute talk in a few weeks about the
human factors of formalized mathematics. I'm gathering some
anecdata about the most common challenges faced by Lean
newbies. So if you frequently answer questions in #new members,
a few questions for you:

1. What are the most common categories of questions asked by
newbies? Does it differ between mathematicians and software
engineers?

2. Which Lean features do newbies struggle with the most early
on? Which Lean features does everyone seem to struggle with
no matter how long they've used Lean?

3. What are common misconceptions about formalized
mathematics that you observe in newbie questions? What
resources do you use to correct those misconceptions?

Feel free to answer any or all of these, and thank you in advance!

Using Lean

example (p q r : Prop)

:pA(gvr)e(paqg)Vv(pAar) := by

apply Iff.intro

- intro h
cases h.right with
| inl hq =>

show (p A q) v (p A T)
exact Or.inl (h.left, hq)
| inr hr =>
show (p A q) v (p A T)
exact Or.inr (h.left, hr)
- intro h
cases h with
| inl hpg =>
show p A (q vV r)
exact (hpq.left, Or.inl hpq.right)
| inr hpr =>
show p A (q v r)
exact (hpr.left, Or.inr hpr.right)

¥ Tactic state

1 goal
vcase mp

p gqr : Prop
h:pa(qvVvr)
Xt qvr
FPAQVPAT

» All Messages (0)

At a given pointina
proof...

What facts have been
locally created?

What am | trying to
prove right now?

section LayoutMonotone

theorem layoutFluidAt.monotone (dim : Fin 2) (els : List FluidEl) (p : Pos)

apply Rat.add_nonneg ell.el.box.size.2.prop
exact h_valid. left

case inr h_el' =>
have h_suffix : els.IsStrictSuffix (ell :: el2 :: els)
existsi [ell, el2]
constructor <;> simp

by

cases els with
| nil => trivial
| cons el3 els =>
—— TODO: rewrite this using layoutFormula
have := ih (el3 :: els) h_suffix
(p + ell.prevMargin.toVec dim
+ ell.el.box.size.nthVec dim + ell.nextMargin.toVec dim + el2.prevMargin.toV
+ el2.el.box.size.nthVec dim + el2.nextMargin.toVec dim)
(List.Chain'.tail h_valid.right)
h_el'
apply le_trans _ this; simp
have h_ell_el2 := h_valid. left
have := List.chain'_cons.mp h_valid.right
have h_el2_el3 := this.left
simp [valid_adjacent_fluid_els] at h_ell_el2 h_el2_el3

—— TODO: try and abstract out this logic
cases dim.two_eq_or
case inl h_dim =>
simp [h_dim, Rat.toVec, Prod.nthVec, Prod.nthﬂ
rw [add_assoc, add_assoc, add_assoc, add_assoc, add_assoc]
rw [le_add_iff_nonneg_right (p.1 + ell.prevMargin)]
apply Rat.add_nonneg ell.el.box.size.l.prop
rw [<add_assoc]; apply Rat.add_nonneg h_ell_el2
apply Rat.add_nonneg el2.el.box.size.l.prop
exact h_el2_el3
case inr h_dim =>
simp [h_dim, Rat.toVec, Prod.nthVec, Prod.nth]
rw [add_assoc, add_assoc, add_assoc, add_assoc, add_assoc]
rw [le_add_iff_nonneg_right (p.2 + ell.prevMargin)]
apply Rat.add_nonneg ell.el.box.size.2.prop
rw [~add_assoc]; apply Rat.add_nonneg h_ell_el2
apply Rat.add_nonneg el2.el.box.size.2.prop
exact h_el2_el3

» All Messages (0)

1 goal

el' : Element
dim : Fin 2
ell : FluidEl

p : Pos

el2 el3 : FluidEl

els : List FluidEl

ih : V (1' : List FluidEl),

1'.IsStrictSuffix (ell :: el2 :: el3 :: els) -
Y (p : Pos),
valid_fluid_els 1' -
V (h_el' : el' € layoutFluidAt dim 1' p), Prod.nth p dim + (1'.head ~).prevMargin =

Prod.nth el'.box.lo dim

h_validt : valid_fluid_els (ell :: el2 :: el3 :: els)

h_el't : el' € layoutFluidAt dim (ell :: el2 :: el3 :: els) p

h_valid : valid_adjacent_fluid_els ell el2 A List.Chain' valid_adjacent_fluid_els (el2 :: el3
i1 els)

h_el' : el' €

layoutFluidAt dim (el3 :: els)
(p + ell.prevMargin.toVec dim + (t(Prod.nthVec ell.el.box.size dim).1, t(Prod.nthVec
ell.el.box.size dim).2) +
ell.nextMargin.toVec dim +
el2.prevMargin.toVec dim +
(t(Prod.nthVec el2.el.box.size dim).1, t(Prod.nthVec el2.el.box.size dim).2) +
el2.nextMargin.toVec dim)
h_suffix : (el3 :: els).IsStrictSuffix (ell :: el2 :: el3 :: els)
thist : Prod.nth
(p + ell.prevMargin.toVec dim + (t(Prod.nthVec ell.el.box.size dim).1, t(Prod.nthVec
ell.el.box.size dim).2) +
ell.nextMargin.toVec dim +
el2.prevMargin.toVec dim +
(t(Prod.nthVec el2.el.box.size dim).1, t(Prod.nthVec el2.el.box.size dim).2) +
el2.nextMargin.toVec dim)
dim +
((el3 :: els).head ~).prevMargin =
Prod.nth el'.box.lo dim
h_ell_el2 : @ = ell.nextMargin + el2.prevMargin
this : valid_adjacent_fluid_els el2 el3 A List.Chain' valid_adjacent_fluid_els (el3 :: els)
h_el2_el3 : @ = el2.nextMargin + el3.prevMargin
h_dim : dim =0
~ p.1 + ell.prevMargin =
p.1 + ell.prevMargin + tell.el.box.size.1l + ell.nextMargin + el2.prevMargin +
tel2.el.box.size.1l + el2.nextMargin +
el3.prevMargin

Restart File

Prod.nth el'.box.lo dim
h_validt : valid_fluid_els (ell :: el2 :: el3 :: els)
h_el't : el' € layoutFluidAt dim (ell :: el2 :: el3 :: els) p
h_valid : valid_adjacent_fluid_els ell el2 A List.Chain' valid_adjacent_fluid_els (el2 :: el3
11 els)
h_el' : el' €
layoutFluidAt dim (el3 :: els)
(p + ell.prevMargin.toVec dim + (t(Prod.nthVec ell.el.box.size dim).1, t(Prod.nthVec
elllel.box.size dim).2) +
ell.nextMargin.toVec dim +
el2.prevMargin.toVec dim +
(t(Prod.nthVec el2.el.box.size dim).1, t(Prod.nthVec el2.el.box.size dim).2) +
el2.nextMargin.toVec dim)
h suffix : (el3 :: els).IsStrictSuffix (ell :: el2 :: el3 :: els
thist : Prod.nth
(p + ell.prevMargin.toVec dim + (t+(Prod.nthVec ell.el.box.size dim).1, t(Prod.nthVec
ell.el.box.size dim).2) +
ell.nextMargin.toVec dim +
el2.prevMargin.toVec dim +

(t(Prod.nthVec el2.el.box.size dim).1, t(Prod.nthVec el2.el.box.size dim).2) +
el2.nextMargin.toVec dim)

aim +
((e13 :: els).head ~).prevMargin < Abstract repeated details
Prod.nth el'.box.lo dim
h ell el2 : 0 = ell.nextMargin + el2.prevMargin
this : valid_adjacent_fluid_els el2 el3 A List.Chain' valid_adjacent_fluid_els (el3 :: els)
h_el2 el3 : 0 = el2.nextMargin + el3.prevMargin
h dim : dim = 0
~ p.1 + ell.prevMargin =
p.1 + ell.prevMargin + tell.el.box.size.1l + ell.nextMargin + el2.prevMargin +
tel2.el.box.size.l + el2.nextMargin +
el3.prevMargin

- p.1 + ell.prevMargin =
p.1 + ell.prevMargin +
(tell.el.box.size.1 +
(ell.nextMargin + (el2.prevMargin + (tel2.el.box.size.1l +
(el2.nextMargin + el3.prevMargin)))))

"Howcanlgetridofp.1 + el1.prevMargin from both sides?”

a p'L ? timeout at "whnf , maximum

number of heartbeats (200000)

Vab:0Q, a=sa+b=>0-=0D>D

v (:
‘ ab'@),as

abS_add,

V(ab;Q),asa+b'90$' theorem ah-

= O Q repo:|eanprover—community/mathlib4 "a<a+b" + ~ O] 1Y
Resu‘t Filter by 4 files (77 ms) in leanprover-community/mathlib4 X Ns
@ in | | <> Code 4 v Mathlib/Algebra/Order/Sub/Defs.lean ® Lean - }
In le;
f () Issues a5
177
V(al 19 Pull requests 679 178 protected theorem le_add_tsub (hb : AddLECancellable b) : a = a + b - b := Dby
179 rw [add_comm]
() Discussions 0
~ 199
I Commits 2 200 theorem le_add_tsub' : a =a +b-b:=
n Lean 4 .
pack 201 Contravarlant.AddLECancellable.1e_add_tsub
ackages 0
Statement ?
0 Wwikis a
i v Mathlib/SetTheory/Ordinal/Basic.lean @ Lean -
Paths .
836 [rwa [¢ fol; assumption]
import d [Mathlib/ 837 . cases H <;> constructor <;> [rwa [fol; assumptionl)
838
0 Mathllb/AIgebra/Order/ 839 theorem le_add_right (a b : Ordinal) : a = a + b := by
lemma 1e~ 5 .../AIgebra/Order/Monoid/Canonical/ 840 simpa only [add_zerol using add_le_add_left (Ordinal.zero_le b) a
begin But
05 Mathlib/Algebra/Order/Sub/ 842 theorem le_add_left (a b : Ordinal) : a = b + a := by
rw add : .
— . Mathlib/SetTheory/Ordinal/
eéxact h
end @ More directories... v Counterexamples/CanonicallyOrderedCommSemiringTwoMuI.Iean @ lean -
179 ({b - a.1, fun H => (tsub_pos_of_1t h).ne' (prod.mk.inj_iff.1 H).1),
Advanced
R 180 Subtype.ext <| Prod.ext (add_tsub_cancel_of_le h.le).symm (add_sub_cancel _) .syi
® Owner 181

- "

def foo {a b : Q@ (h:a=<a+b) :0
exact?

%

IA
(on
Il
(on
<

v Suggestions

Try this: exact nonneg_of_le_add_right h

theorem nonneg_of_le_add_right
{a : Type u_1} [AddZeroClass a] [LE a]

[

ContravariantClass a a (fun (x x_1 : a) => x + x_1)
fun (x x_1 : a) => x s x_1

]
{fa :a} {b : af (h:a<a+b):

O <b

viab:Q),a<a+b->0<b] #lucky

Result

Found O definitions mentioning Rat.instOfNat, Rat, LE.le, Rat.instLE, instHAdd, Iff,
HAdd.hAdd, Rat.instAdd and OfNat.ofNat. Of these, O match your pattern(s).

-?2a<?a+?b>0<7?b] #lucky

Result

Found 1929 definitions mentioning LE.le, HAdd.hAdd and OfNat.ofNat. Of these, one
matches your pattern(s).

e nonneg_of_le_add_right Mathlib.Algebra.Order.Monoid.Unbundled.Basic
V {o : Type u_1} [inst : AddZeroClass a] [inst_1 : LE «]
[inst_2 : ContravariantClass a a (fun x x_1 = x + x_1) fun x
X1 =>x<sx.1] {ab:a}, as<sa+b->0=chb

How do we help people find
nonneg_of_le add_right?

Loogle, Mathlib docs: integration + training
Al tools: make them... better??

Search tactics: facilitate writing MWE

def foo {ab: Q (h:a=<sa+b):0=<b :=Dby
exact?

%

Calls to action

Read up on psych research (the replicable kinds)

- Cognitive psychology: memory, perception, mental models, logical reasoning
- Educational psychology: cognitive load, skill acquisition, contrasting cases

- Cognitive engineering: representations, user modeling, trade-offs

- Conspicuously avoided: HCI, “intuitive” interfaces, 1-hour user studies, ...

Build the infrastructure for evaluating human factors

- Textbook quizzes, Zulip questions are both potential data sources

- Validated assessments of competency (see: “Force Concept Inventory”)

- Never underestimate the power of talking to people and watching them work
- Conspicuously avoided: IDE telemetry, user surveys

Improve the cognitive efficiency of devtools

- Reduce the friction of discovery (incl. discovering the discovery tools)
- Visualize, don't dump information (incl. docs, error messages, etc)

- Conspicuously avoided: proof widgets, Al consultants

