
Totally Live Programming with Hazel

Cyrus Omar , Andrew Blinn, and David Moon (+ many Hazel contributors)

Future of Programming Lab (FP Lab)
University of Michigan

Topos Institute
August 29, 2024

^
and Proving?

Live Language Services

The Gap Problem
When the program is incomplete, there is a gap in service .

● Syntax errors
● Type errors
● Run-time errors
● Merge conflicts

This is rooted in a definitional gap : language definitions
don’t assign structure and meaning to incomplete
programs.

2 +
2 + true
2 / 0
<<<<<<< HEAD 2 + 2 = 4 ====== …

Solving the Gap Problem…
The Hazel structure editor ensures that there are no syntax errors
by inserting holes.

Solving the Gap Problem…
The Hazel structure editor ensures that there are no syntax errors
by inserting holes. The semantics understands holes , so every editor
state is therefore syntactically, statically, and dynamically
well-defined (i.e. Hazel is totally live !)

[POPL 2024, OOPSLA 2023, POPL 2019, POPL 2017]

Solving the Gap Problem…
The Hazel structure editor ensures that there are no syntax errors
by inserting holes. The semantics understands holes , so every editor
state is therefore syntactically, statically, and dynamically
well-defined (i.e. Hazel is totally live !)

[POPL 2024, OOPSLA 2023, POPL 2019, POPL 2017]

Solving the Gap Problem…
The Hazel structure editor ensures that there are no syntax errors
by inserting holes. The semantics understands holes , so every editor
state is therefore syntactically, statically, and dynamically
well-defined (i.e. Hazel is totally live !)

[POPL 2024, OOPSLA 2023, POPL 2019, POPL 2017]

Solving the Gap Problem…
The Hazel structure editor ensures that there are no syntax errors
by inserting holes. The semantics understands holes , so every editor
state is therefore syntactically, statically, and dynamically
well-defined (i.e. Hazel is totally live !)

[POPL 2024 , OOPSLA 2023, POPL 2019, POPL 2017]

Structure Editing has a Viscosity Problem
Block Editors like
Scratch

Structure Editing has a Viscosity Problem
Keyboard-Driven Structure Editors like Jetbrains
MPS

[Berger et al., FSE 2016]

Structure Editing has a Viscosity Problem
Keyboard-Driven Structure Editors like Jetbrains
MPS

[Moon et al., VL/HCC 2022]

“MPS was EXTREMELY cognitively
demanding to me; it felt like I was
solving tree-manipulating puzzles
the entire time I used it… the worst
part by far is the lack of ‘scratch’
workspace” (P2)

“Towers of Hanoi” (P1, P4, P5)

Solving the Gap Problem…
The Hazel structure editor ensures that there are no syntax errors
by inserting holes. The semantics understands holes , so every editor
state is therefore syntactically, statically, and dynamically
well-defined (i.e. Hazel is totally live !)

[POPL 2024, OOPSLA 2023, POPL 2019, POPL 2017]

…and the Viscosity Problem

Solving the Gap Problem…
The Hazel structure editor ensures that there are no syntax errors
by inserting holes. The semantics understands holes , so every editor
state is therefore syntactically, statically, and dynamically
well-defined (i.e. Hazel is totally live !)

[POPL 2024, OOPSLA 2023, POPL 2019, POPL 2017]

Solving the Gap Problem…

…and the Viscosity Problem
The Hazel structure editor introduces gradual structure editing ,
which allows direct manipulation of the textual projection, rather
than requiring the user to work only with tree transformations.

[VL/HCC 2023, TyDe 2022, ongoing work]

The Hazel structure editor ensures that there are no syntax errors
by inserting holes. The semantics understands holes , so every editor
state is therefore syntactically, statically, and dynamically
well-defined (i.e. Hazel is totally live !)

[POPL 2024, OOPSLA 2023, POPL 2019, POPL 2017]

Try it yourself:

hazel.org/build/dev

Hazel: A Totally Live Demo

Usability of Gradual Structure Editing
Gradual structure editing is about
as productive as text editing,
more so than MPS for code
modification. [VL/HCC 2023]

Usability of Gradual Structure Editing

Gradual structure editing allows code modification tasks to be
patterned as they are in text editors. [VL/HCC 2023]

Teaching with Hazel: Initial Feedback
We use Hazel in an undergraduate PL course (which introduces FP).

● 200+ students have used it successfully to complete ~1-3 hour coding
tasks after only a ~5 minute tutorial on how to edit in Hazel.

“The Hazel editor is by far the most user friendly
IDE/editor I have ever used!!! The colors/design are
awesome and made me feel welcomed (sounds cheesy
but true) as a newcomer to functional programming, and
the colorful highlighting and explanations were
lifesavers!! I have never used a better editor, and I was
sad we had to switch to Learn OCaml! I also loved the
Swift Playgrounds-style "insta-run" and the instant
feedback for the code questions!”

+ Generic symbolic representations
+ Symbol manipulation affordances
+ Abstraction and composition

and calculation and automation

 Abstract & Symbolic

Live & Direct

+ Domain-specific representations
+ Direct manipulation affordances
+ Live (immediate + uninterrupted)

feedback

+ Generic symbolic representations
+ Symbol manipulation affordances
+ Abstraction and composition

and calculation and automation

 Abstract & Symbolic

Live & Direct Abstract & Symbolic

+ Domain-specific representations
+ Direct manipulation affordances
+ Live (immediate + uninterrupted)

feedback

+ Generic symbolic representations
+ Symbol manipulation affordances
+ Abstraction and composition

and calculation and automation

Hazel

Livelits: Filling Typed Holes with Live GUIs (PLDI 2021)

Big Picture
Combining foundational PL + HCI research enables ambitious applications :

● Building state-of-the-art educational technology

● Building usable formal reasoning assistants

● Building collaborative computational science environments

● Sensibly integrating semantics + large language models + humans

● Together, we could build a live computational commons

Hazel as a Classroom Proof Assistant
● Specification and proof is an increasingly important

component of a computer science education, but we still
largely teach it on-paper. Can we make a classroom proof
assistant ?

● Lots of prior work in this area informing our efforts!
We wrote a survey that will be presented at HATRA 2024
this fall.

● Key distinction: scaffolding vs. support

Demo: Hazel Stepper

https://hazel.org/build/dev/

Reasoning with Equations

Demo: Logical Derivations

https://hazel.org/build/derivation/

Big Picture
Combining foundational PL + HCI research enables ambitious applications :

● Building state-of-the-art educational technology

● Building usable formal reasoning assistants

● Building collaborative computational science environments

● Sensibly integrating semantics + large language models + humans

● Together, we could build a live computational commons

Ongoing Work
Collaborative Structure Editing with CmRDTs [in submission]

Ongoing Work
Collaborative Structure Editing with CmRDTs [in submission]

