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Live Language Services



The Gap Problem
When the program is incomplete, there is a gap in service .

● Syntax errors       
● Type errors
● Run-time errors
● Merge conflicts

This is rooted in a definitional gap : language definitions 
don’t assign structure and meaning to incomplete 
programs.
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Structure Editing has a Viscosity Problem
Keyboard-Driven Structure Editors like Jetbrains 
MPS

[Moon et al., VL/HCC 2022]

“MPS was EXTREMELY cognitively 
demanding to me; it felt like I was 
solving tree-manipulating puzzles 
the entire time I used it… the worst 
part by far is the lack of ‘scratch’ 
workspace” (P2)

“Towers of Hanoi” (P1, P4, P5)
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Solving the Gap Problem…

…and the Viscosity Problem
The Hazel structure editor introduces gradual structure editing , 
which allows direct manipulation of the textual projection, rather 
than requiring the user to work only with tree transformations.

[VL/HCC 2023, TyDe 2022, ongoing work]

The Hazel structure editor  ensures that there are no syntax errors 
by inserting holes. The semantics understands holes , so every editor 
state is therefore syntactically, statically, and dynamically 
well-defined (i.e. Hazel is totally live !) 
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Try it yourself: 

hazel.org/build/dev

Hazel: A Totally Live Demo



Usability of Gradual Structure Editing
Gradual structure editing is about 
as productive as text editing, 
more so than MPS for code 
modification. [VL/HCC 2023]



Usability of Gradual Structure Editing

Gradual structure editing allows code modification tasks to be 
patterned as they are in text editors. [VL/HCC 2023]



Teaching with Hazel: Initial Feedback
We use Hazel in an undergraduate PL course (which introduces FP).

● 200+ students  have used it successfully to complete ~1-3 hour coding 
tasks  after only a ~5 minute tutorial on how to edit in Hazel.

“The Hazel editor is by far the most user friendly 
IDE/editor I have ever used!!! The colors/design are 
awesome and made me feel welcomed (sounds cheesy 
but true) as a newcomer to functional programming, and 
the colorful highlighting and explanations were 
lifesavers!! I have never used a better editor, and I was 
sad we had to switch to Learn OCaml! I also loved the 
Swift Playgrounds-style "insta-run" and the instant 
feedback for the code questions!”
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+ Domain-specific representations
+ Direct manipulation affordances
+ Live (immediate + uninterrupted) 

feedback

+ Generic symbolic representations
+ Symbol manipulation affordances
+ Abstraction and composition

and calculation and automation

Hazel

Livelits: Filling Typed Holes with Live GUIs (PLDI 2021)



Big Picture
Combining foundational PL + HCI research  enables ambitious applications :

● Building state-of-the-art educational technology

● Building usable formal reasoning assistants

● Building collaborative computational science environments

● Sensibly integrating semantics + large language models + humans

● Together, we could build a live computational commons



Hazel as a Classroom Proof Assistant
● Specification and proof is an increasingly important 

component of a computer science education, but we still 
largely teach it on-paper. Can we make a classroom proof  
assistant ?

● Lots of prior work in this area informing our efforts! 
We wrote a survey that will be presented at HATRA 2024 
this fall.

● Key distinction: scaffolding  vs. support



Demo: Hazel Stepper

https://hazel.org/build/dev/



Reasoning with Equations



Demo: Logical Derivations

https://hazel.org/build/derivation/
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Ongoing Work
Collaborative Structure Editing with CmRDTs [in submission]
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