Semantics of Reactive Probabilistic Programming

Topos Colloquium, September 2024

Guillaume Baudart - Louis Mandel - Christine Tasson

mailto:guillaume.baudart@inria.fr
mailto:l.mandel@us.ibm.com
mailto:christine.tasson@isae-supaero.fr

Introduction

Model a flight

Flight Tracker
@ Chopin & Papaspiliopoulos. An introduction to sequential Monte Carlo. 2020

Model evolution of the system

xt’:yt e Cruising speed and altitude

) e Straight movement

Xei 1, Vil e Radar tracks the plane

Bayesian inference
e Environment randomly influences the position
e Radar measures are noisy

e What are the conditional distributions of speed
and position given radar observations?

€,

Goal
Study and apply semantics of probabilistic reactive programming language
Prove soundness of program transformations.

Reactive Programming

Example

Reactive Flight Tracker

X1, Yit1

Straight movement
e Cruising altitude
e Constant speed 6
® pos,,; = pos, +

Radar measures: angle and delay

rade = (ar,d:) = f(pos,) with

Qe atan(v/x)

51’ — 2 Vv Xt2+yt2 Ceight

Synchronous Flight Tracker

Xl Vw1

Block diagrams (a la Simulink or Scade)

u
controller i

lane position
plane p s

d
radar tracker
rafar,

Synchronous program (a la Lustre or Zelus)

1 node tracker(rad_ obs) = (pos, dif) where
> rec init pos = pos_ init

3 and pos = last pos + theta

1+ and rad = f(pos)

5 and dif = abs(rad - rad__obs)

¢ node main(rad__obs) = u where

7 rec (pos, dif) = tracker(rad__obs)

s and u = controller(pos, dif)

Reactive Programming

Synchronous Paradigm

Synchronous Programming
@ Paul Caspi & al. Lustre, 1987

A language with restricted expressivity, yet strong safety and well-defined semantics

e Synchronous hypothesis e Productive Recursive Equations e where rec E
e simultaneous inputs under fixpoint convergence criteria
e instantaneous o Causality: n-th element of the output stream depends on the
computation n first elements of the input stream
e Simply typed 'Fe: A o Deterministic: [e] : Stream ' — Stream A
Example
1 node tracker(rad_ obs) = (pos, dif) [tracker] (G)n = (pn,dn)

> where rec init pos = pos_ init ..
po = pos_init
s and pos = last pos + theta

1+ and rad = f(pos) Pn = Pn_1+0=py+nb,
5 and dif = abs(rad - rad__obs) d, = |f(po+ nf)— G,(rad_obs)|

Topos of Trees
@ Birkedal & al. (...) step-indexing in the topos of trees. LMCS12

Tree = [NOP, Set|

e N encodes the time steps.
e Presheaves encode the growing knowledge of the stream when time evolves
e Natural transformations encode causality: outputs depend only on previous inputs

NOP 0 < 1 < 2 <

Stream bool ¥} +T— 25— 22

9 9(0) & (1) & 9(2) — -
Lr=lel N
o A(0) & (1) & A (2) — ---

The topos framework to reason on synchronous and guarded reactive languages
W Guatto. A Generalized Modality for Recursion. LICS18

Synchronous Programming — Operational Semantics

@ Caspi & Pouzet, A Co-iterative Characterization of Synchronous Stream Functions, CMCS98

Labelled Transition System e A
States: Sta (History) Projection: [¢]°™ : Sta — A
Inputs: v € ' (Labels) Allocation: [e]™" : Sta
Outputs: A (Observables) Transition: [e]***P : Sta x [— Sta denoted S 25 S
Example

1 node tracker(rad_obs) = (pos, dif)

S = [tracker]™ = (L, po, L)
> where rec init pos = pos_ init

4 =
s and pos = last pos + theta [tracker]™ " : (p-1, p, d) = (p, p+ 6, |f(p+6) — g)|
+ and rad = g(pos) . with g = y(rad_obs)
obs
5 and dif = abs(rad - rad_ obs) [tracker]™™ (p-1, p, d) = (p, d)
Remark

Memory is bounded as only the last g steps in history are needed with g the number of last.

Synchronous Programming — Soundness and Adequacy

Denotational semantics: Stream function associated to [- e : A.

[€] : Stream ' — Stream A

Operational semantics: Labeled Transition System associated to [- e : A.

He]]step . [[e]]init _ 50 7 51 72 52 73 o Yn Sn Yn+1
ﬂeﬂobsj/ J/ J/
Vi Vo 000 Vn

Denote Vn > 1, [e]:™ (11, .-, 7n) = [e]°™ ([[e]]Step (S,,,l,fyn)) =,

Theorem (Equivalence between denotational and operational semantics).

If all recursive equations have a unique solution for every inputs and the program is causal, then

VG Vn>1, [e] (G), = [e],™" (G<n)

Probabilistic Reactive
Programming

Bayesian Inference

Bayesian Reactive Flight Tracker
@ Chopin & Papaspiliopoulos. An introduction to sequential Monte Carlo. 2020

Random environment (prior)

X Yt zz = 10km
poS; 1~ JV(pOSt-i-@,Sp)

TN K 1 Yial

Bayesian Reactive Flight Tracker
@ Chopin & Papaspiliopoulos. An introduction to sequential Monte Carlo. 2020

Random environment (prior)

xpyt Zy = 10km
pos,.; ~ A (pos,+0,sp)

X Vot Radar: noisy measures (likelihood)

rad; = f(pos;)
apy = atan(%/x) (angle)
8 = 2VxXt¥/ag. (delay)
rad_obs; ~ .#(rady,s;)

Bayesian Reactive Flight Tracker
@ Chopin & Papaspiliopoulos. An introduction to sequential Monte Carlo. 2020

Random environment (prior)

xpyt Zy = 10km
pos,.; ~ A (pos,+0,sp)

X Vot Radar: noisy measures (likelihood)

rad; = f(pos;)
apy = atan(%/x) (angle)
8 = 2VxXt¥/ag. (delay)
rad_obs; ~ .#(rady,s;)

At each time step, what is the (posterior) conditional distribution of the position given the
observed radar measures ? Vn € N, P(pos|rad obs),

Probabilistic Synchronous Language
y guag
@ Baudart & al. Reactive Probabilistic Programming, PLDI20 : g

last pos = x,,),
ProbZelus (syntax a la Zelus, Pyro or Stan) p !

1 proba tracker(rad_ obs) = pos where
08 = X415 Vw1

2 rec init pos = pos_ init :

3 (* prior *) % / -

4 and pos = sample(gaussian(last pos+theta, s_p)) e

_ _ _ d = f(pos)

5 and rad = f(pos) o,

6 (* likelihood / conditionning *) A ad_obs =(a,, §,)

7 and () = observe(gaussian(rad, s_r), rad_ obs)) jli
w=pdfigaussian(a,s_r))(a,,,)
8

o node main(rad_obs) = u where

10 (* posterior *)
11 rec pos_ dist = infer (tracker (rad_obs))
12 and u = controller(pos_ dist)

Probabilistic Synchronous Language

@ Baudart & al. Reactive Probabilistic Programming, PLDI20 : g

last pos = X;,Y,
ProbZelus (syntax a la Zelus, Pyro or Stan) z o

i proba tracker(rad_obs) = pos where oN\e \°
.. . O eI\ POS =X 1, Yig1
2 rec init pos = pos_ init 5 ®o0
o o
3 (* prior *) (” e
4 and pos = sample(gaussian(last pos+theta, s_p)) 0
/ ® e rad = f(pos)

5 and rad = f(pos) Ja.

/O .
6 (* likelihood / conditionning *) /X () @ rad_obs =(a, §,)

7 and () = observe(gaussian(rad, s_r), rad_ obs)
w=pdfigaussiar

o mnode main(rad_obs) = u where

* posterior * .
. (*p) Sequential Monte-Carlo Inference

11 rec pos_dist = infer (tracker (rad_obs)) sample: [(pos®, 1) (pos”, 1)]

12 and u = controller(pos_ dist) S [(pOSO WO) (pos”, w™]
N))

categorical distribution 9

Probabilistic Reactive
Programming

Semantics

Probabilistic Synchronous Programming — Denotational Semantics

Stream of probabilistic measures

[l + infer e : Prob A] : Stream [— Stream (Prob A)

Solving recursive equations towards a schedule-agnostic semantics

e inherited from block diagrams that are standard in the industry,
e manually scheduling is not modular.

Problem to compute fixpoints in the measure semantics:

e = (x,y) where Wanted semantics:
rec x = sample(gaussian(42, 1)) [e] = fR 5()(9 N (42,1)(x)dx
and y =x 7

Yet, in the measure semantics, the least element (and least fixpoint) is the null measure.
W, Jones & Plotkin. A Probabilistic Powerdomain of Evaluations. 1998

Solution: externalize random seeds and compute fixpoint in the value domain

\ Vakar & al. A domain Theory for Statistical Probabilistic Programming. POPL2019 10

Probabilistic Synchronous Programming — Denotational Semantics

Stream of probabilistic measures
[- infer e: Proba A] : Stream I — Stream (Proba A)

Externalize randomness in order to solve recursive equations:
If probability distributions have density wrt the counting or the Lebesgue measures, then

p(U) = / Sicdf ,(neudr
[0,1]
with r € [0, 1] a random seed and jcdf ,(r) its inverse cumulative distribution function.

Sampling semantics: if k is the number of samples, then

(e) : Stream T x Stream [0,1]% — Stream A x Stream R

Stochastic semantics: if (v,, w,) = (€) (G, R),, then

v, Vn, [e] (G), = / Oy, Wp dR = / Oy, Wn dR<p
([0,1]%)"

([0, 1])"
11

Probabilistic Synchronous Programming — Operational Semantics

Sampling Labelled Transition System

States: Sta x RT Projection: (€)°™ : Sta x R™ — Ax Rt

(History and score) Allocation: (e)™": Sta x R*
Inputs: v € T (Labels) Sampling Transition: (&)™ : (S,w) 25 (S, w)
Outputs: A (Observables) with y €T, r €[0,1]% and w, w’ € R*

Stochastic Labelled Transition System: if (S', w’) = (€)** (S, w,~, r), then

[e]*® : SesStal dsr w' dr € Prob Sta
[0,1]¥

12

Probabilistic Synchronous Programming — Example

Syntax

1 node tracker(rad_obs) = pos

0

where rec init pos = pos_init
s and pos = sample(gaussian(last pos + theta, s_p))
1 and rad = f(pos)

5 and () = observe(gaussian(rad, s_r), rad_ obs)

Operational semantics: with states (pos_last, pos) € Sta
[tracker]®™ : (p_1,p) — p
[[tracker]]init (L, po), 1

tracker]™ P : (p_1,p), w L5
frackerl 2 (i) W' = wx N (F(p +9),5.)(e)

S = (p,p' +0) with p' = icdf 4, ,(r) in

with g = «v(rad_obs)

13

Probabilistic Reactive Semantics — Soundness and Adequacy

Denotational semantics: Stream function associated to [- e : Meas A

(e) : Stream [— Stream A x Stream R™

Operational semantics: Labeled Transition System associated to I' F e : Meas A

st init 1R V2, Re v3,Rs Yn;Rn Vnt1:Rng1
([E‘))b P ¢ ((e))”“ :50,]. 51,W1 52,W2 —— 000 —— 5,,7Wn L
(e])obs\t \L \L
Vi, W1 V2, W2 Vn, Wn

Set Vn Z 1a ((e])f',un (717 < Uny R17 sy Rn) = ([e))ObS (((e])Step (5n717 Wn—1,Yn, Rn)) = Vp, Wp
Theorem (Equivalence between denotational and operational semantics)

If all recursive equations have a unique solution for every inputs and the program is causal, then
for any input stream G, and for any random seeds stream R,

Vn2>1, () (G)n = (e)," (G<n, R<r)

Thus, the denotational and operational output probability measures coincide at each time step.

14

Program Equivalence

Observational Equivalence

Observational equivalence (operational)

sample(e;) + sample(e) %X+ y where rec x = sample(e;) and y = sample(e)

o

Definition: e; ™ e, if for all input stream G, [a] (G) = [e2] (G).

Stochastic bisimulation: e; ~ e, if there is ¥ C Sta x Sta such that for all ~, for all 5;€’s;,
if 5 —— (1, then there is ¢, with s, SAN o such that

(e1) (e2)

e there is a coupling C € Proba (Sta x Sta) with marginals 7 and ¢»
e there is a measurable relation on pair of states 4’ C % such that

C(@)=1 Vs%'s), obs,)(s1) = obs(e,)($))
et vice versa.
obs
Theorem: If e; ~ e, then ¢ =~ 6.

Proof: consequence of adequacy.

15

Observational Equivalence (Denotational)

obs
sample(e;) + sample(ey) ~ x + y where rec x = sample(e;) and y = sample(e;)

Sam
~

Sampling bisimulation: e; ~ e, if there is ¥ : [0,1]% — [0,1]%

e preserving uniform distribution v, (\<) = Ak
e VG, R € Stream (I x [0,1]%), (&1) (G, R) = (&) (G, (R)) with ¥(R) = (¥(Ry))nen

b
Theorem: If e; = e, then e; ~ e.

Proof: We apply the change of variable formula along v, set s;(G, R), w;(G, R) = (&) (G, R)

el ()= [(6 Rcmd(R) = [wa(G (R uicuimydN(R)
([0,1]1)" ([0,1])"

_ / w(G. R')dsyc.rdN2(R')
(012"
= [e] (G)

16

Stream Sampling Semantics
adapted from @y Bourke et al. Velus, 2017

Inference system (selected rules): G,RF el s,w

F,GFels F.GFels, F.GFelw

F,G,[I+el (s,1) F,G,[R] - sample(e) | (icdfs, (R),1) F.G,[] + factor(e) J ((), w)

F,G,Re el (se, we) F(f) = proba f x = ef F,[x < se], Re = er 4 (s, w)
F,G,[Re: Re] - f(e) U (s, w = we)

F,.G+ Gg,Re - E : wg F,G+ Gg,Re Fe J (s,w) F,G,RF el (G(x),w)
F,G,[Re : RE] F e where rec E | (s, w * wg) F,G,REx=e:w
F,G,REel (i-s,w-w) G(x.last) =i- G(x) F,G,RiFE :wm F,G,Ry F Ex:wy
F,G,RFinitx=¢e:w -1 F,G,[R1: R]F Ei and E> : wy * wy

p = RV(e) [F,G,RE el (s,w) w =T Wlge(o,9)p
F, G I~ infer(e) | integ, W s

Soundness: G,RFels,w ifandonlyif (s,w)=[e](G,R)

17

Program Equivalence — Commutativity

sample(e;) + sample(e;) =X+ y where rec x = sample(e;) and y = sample(e)

18

Program Equivalence — Commutativity

sample(e;) + sample(e;) =X+ y where rec x = sample(e;) and y = sample(e)

G, Ry + sample(er) | (s1,w1) G, Ry - sample(ez) | (s2, w2)

G,[R1 : Ro] | sample(e;) + sample(e) | (s1 + s2, wiwn)

18

Program Equivalence — Commutativity

obs
sample(e;) + sample(ey) ~ x + y where rec x = sample(ey) and y = sample(e;)

G, Ry + sample(er) | (s1,w1) G, Ry - sample(ez) | (s2, w2)

G,[R1 : Ro] | sample(e;) + sample(e) | (s1 + s2, wiwn)

G + G, Ry - sample(e2) | (s2, w2) G + Gg, Ry - sample(er) | (s1,w1)

G+ Gg, Ry x = sample(e) : w» G+ Gg,R1 + y = sample(er) : wy

G+ Gg,] Fx+yd(s2+s1,1) G + Gg,[R2 : Ri] - x = sample(ez) and y = sample(er) : wiws

G,[R2 : Ri] F x + y where rec x = sample(ez) and y = sample(er) | (s2 + s1, wiws)

where Gg = [x + s,y < s1].

18

Program Equivalence

Application — Assumed Parameter Filter

Assumed Parameter Filter (APF) Inference

\ Erol & al. A nearly-black-box online algorithm for joint parameter and state estimation in temporal models, 2017

At each time step, different methods for

proba f(pre_x) = pre_x + theta where

rec init theta = sample(gaussian(zeros, st)) e state parameters

and theta = last theta)

sequential Monte-Carlo inference

proba tracker(rad_obs) = pos where

rec init pos = pos_init e constant parameters

and pos = sample(gaussian(f(last pos), sp))

and rad = g(pos)

and () = observe(gaussian(rad, sr), rad_obs)

symbolic inference and optimization

APF necessitates a program transformation
node main(rad_obs) = u where to extract constant parameters.

rec pos_dist = infer (tracker (rad_obs))
and msg = controller(pos_dist)

Program Transformation for APF — Soundness

proba f(pre_x) = pre_x + theta where
rec init theta = sample(gaussian(zeros, st))
and theta = last theta

proba tracker(rad_obs) = pos where
rec init pos = pos_init
and pos = sample(gaussian(f(last pos), sp))
and rad = g(pos)
and () = observe(gaussian(rad, sr), rad_obs)

node main(rad_obs) = u where

rec pos_dist = infer (tracker (rad_obs))
and msg = controller(pos_dist)

APF Inference definition

let f_prior = gaussian(zeros, st)
proba f_model(theta, pre_pos) = pre_pos + theta

let tracker_prior = f_prior

proba tracker_model(theta, rad_obs) = pos where
rec init pos = pos_init
and pos = sample(gaussian(f_prior(theta, last pos), sp))
and rad = g(pos)
and () = observe(gaussian(rad, sr), rad_obs)

node main(rad_obs) = msg where
rec pos_dist = APF.infer(tracker_model, tracker_prior, rad_obs)
and msg = controller(pos_dist)

APF.infer(f.model, f.prior, e) = infer(f.model(f, e) where rec init § = sample(f.prior))

Soundness:

F,GF infer(f(e)) | d

iff F',GF APF.infer(f.model, f.prior, e) | d

Proofs: By sampling bisimulation (using stream functions) or stochastic bisimulation (using

states and labeled transition systems).

20

Probabilistic Reactive Programming

arXiv Baudart, Mandel, Tasson, Density-Based Semantics for Reactive Probabilistic Programming, 2023

Equivalent Semantics for Probabilistic Reactive Programming,
with observational equivalence characterization

e Operational semantics (sLTS), with stochastic bisimulation
e Sampling semantics (stream functions), with sampling bisimulation

Proofs of Equivalence of Probabilistic Reactive Programs

e Basic equations
e Transformation of programs

‘ G. Kahn, The Semantics of a Simple Language for Parallel Programming, 1974

Future works

e Recursive equations in Probabilistic Programming

e Probabilistic distance between inference algorithms

21

	Introduction
	Model a flight

	Reactive Programming
	Example
	Synchronous Paradigm

	Probabilistic Reactive Programming
	Bayesian Inference
	Semantics

	Program Equivalence
	Observational Equivalence
	Application – Assumed Parameter Filter

