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What I’m Doing Here

I’m here representing a small but enthusiastic “theory of code”
group at Google DeepMind.

We believe that abstract mathematics can inform the design of
new neural network architectures.

...even though history suggests otherwise.
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Some Problems With Theory

Theory, in general, often aims at the wrong target.

Classical programs and neural programs differ substantially,
so classical theory can be misleading.

Neural networks are not sufficiently advanced to take
“internal” advantage of high-level languages. Architectures
are close to being machine code.

Highly distributed computing is rarely hardware-agnostic.
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Categorical Deep Learning

Last year, we wrote a paper with Bruno and Paul—a category
theory paper disguised as a machine learning position paper.

The main thrust was to show that “monadic programming”
could be lifted to “2-monadic programming” and applied to the
setting where the computation has learnable parameters.

In this way, we can augment standard constructions in functional
programming so they’re compatible with various notions of
reparameterization and weight sharing.

It’s a clean picture... or is it?
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Position: Categorical Deep Learning is an Algebraic Theory of All Architectures
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Abstract
We present our position on the elusive quest for
a general-purpose framework for specifying and
studying deep learning architectures. Our opinion
is that the key attempts made so far lack a coherent
bridge between specifying constraints which mod-
els must satisfy and specifying their implementa-
tions. Focusing on building a such a bridge, we pro-
pose to apply category theory—precisely, the uni-
versal algebra of monads valued in a 2-category of
parametric maps—as a single theory elegantly sub-
suming both of these flavours of neural network de-
sign. To defend our position, we show how this the-
ory recovers constraints induced by geometric deep
learning, as well as implementations of many archi-
tectures drawn from the diverse landscape of neural
networks, such as RNNs. We also illustrate how the
theory naturally encodes many standard constructs
in computer science and automata theory.

1. Introduction
One of the most coveted aims of deep learning theory is
to provide a guiding framework from which all neural net-
work architectures can be principally and usefully derived.
Many elegant attempts have recently been made, offering
frameworks to categorise or describe large swathes of deep
learning architectures: Cohen et al. (2019); Xu et al. (2019);
Bronstein et al. (2021); Chami et al. (2022); Papillon et al.
(2023); Jogl et al. (2023); Weiler et al. (2023) to name a few.

We observe that there are, typically, two broad ways in which
deep learning practitioners describe models. Firstly, neural

The title of the paper should be read as “Categorical Deep Learn-
ing is an Algebraic {Theory of All Architectures}”, not “Categori-
cal Deep Learning is an {Algebraic Theory} of All Architectures”.
*Equal contribution 1Symbolica AI 2University of Edinburgh
3Google DeepMind 4University of Cambridge. Correspondence to:
Bruno Gavranović <bruno@brunogavranovic.com>, Paul Lessard
<paul@symbolica.ai>, Andrew Dudzik <adudzik@google.com>,
Petar Veličković <petarv@google.com>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

networks can be specified in a top-down manner, wherein
models are described by the constraints they should satisfy
(e.g. in order to respect the structure of the data they pro-
cess). Alternatively, a bottom-up approach describes models
by their implementation, i.e. the sequence of tensor opera-
tions required to perform their forward/backward pass.

1.1. Our Opinion

It is our opinion that ample effort has already been given
to both the top-down and bottom-up approaches in isolation,
and that there hasn’t been sufficiently expressive theory to ad-
dress them both simultaneously. If we want a general guiding
framework for all of deep learning, this needs to change. To
substantiate our opinion, we survey a few ongoing efforts on
both sides of the divide.

One of the most successful examples of the top-down frame-
work is geometric deep learning (Bronstein et al., 2021,
GDL), which uses a group- and representation-theoretic per-
spective to describe neural network layers via symmetry-
preserving constraints. The actual realisations of such layers
are derived by solving equivariance constraints.

GDL proved to be powerful: allowing, e.g., to cast con-
volutional layers as an exact solution to linear translation
equivariance in grids (Fukushima et al., 1983; LeCun et al.,
1998), and message passing and self-attention as instances of
permutation equivariant learning over graphs (Gilmer et al.,
2017; Vaswani et al., 2017). It also naturally extends to ex-
otic domains such as spheres (Cohen et al., 2018), meshes
(de Haan et al., 2020b) and geometric graphs (Fuchs et al.,
2020). While this elegantly covers many architectures of prac-
tical interest, GDL also has inescapable constraints.

Firstly, usability of GDL principles to implement architec-
tures directly correlates with how easy it is to resolve equiv-
ariance constraints. While PyG (Fey & Lenssen, 2019),
DGL (Wang, 2019) and Jraph (Godwin et al., 2020) have
had success for permutation-equivariant models, and e3nn
(Geiger & Smidt, 2022) for E(3)-equivariant models, it is
hard to replicate such success for areas where it is not known
how to resolve equivariance constraints.

Because of its focus on groups, GDL is only able to
represent equivariance to symmetries, but not all opera-
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Categorical Deep Learning
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Figure 1. Parametric (co)algebras provide a high-level framework for describing structured computation in neural networks.
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This 2-category8 is one of the key components in the categori-
cal picture of gradient-based learning (Cruttwell et al., 2022).
But we hypothesise that more is true (Appendix I):

It is our position that the 2-category Para and 2-categorical
algebra valued in it provide a formal theory of neural

network architectures, establish formal criteria for weight
tying correctness and inform design of new architectures.

3.2. 2-dimensional Categorical Algebra

2-category theory is markedly richer than 1-category theory.

While diagrams in a 1-category either commute or do not
commute, in a 2-category, they serve as a 1-skeleton to which
2-morphisms attach. In any 2-category a square may: com-
mute, pseudo-commute, lax-commute, or oplax9 commute,
meaning, respectively, that relevant paths paths are equal, iso-
morphic, or there is a 2-morphism from one to the other in
one direction or the other. The diagrams below present these
four options, with 2-morphisms denoted by double arrows.

• • • • • • • •

• • • • • • • •
=

∼=

In the long run, we expect that all of these notions will apply
to, either explaining or specifying, aspects of neural architec-
ture past, present and future. Focusing on just one of them,

8More precisely, the construction Para( ). See Appendix G.
9Often also called colax.

the lax algebras are sufficient to derive recursive, recurrent,
and similar neural networks from first principles. Notably,
morphisms of lax algebras are also expressive enough to cap-
ture 1-cocycles, used to formalise asynchronous neural net-
works in (Dudzik et al., 2024)—see Appendix H.1.

Interestingly, this story of how an individual recurrent, recur-
sive, etc. neural network cell generates a full recursive, recur-
rent etc. neural network is a particular 2-categorical analogue
to the story of algebraically free monads on an endofunctor
we briefly mentioned in Remark 2.13.

For all the examples of endofunctors in Section 2.2, there is
a monad whose category of algebras FreeMnd(F ) is equiv-
alent to the category of algebras for the original endofunc-
tor F . We obtain FreeMnd(F ) by iterating F until it sta-
bilises, meaning further application of the endofunctor does
not change the composition. Functional programmers may
recognise this from the implementation of free monads in
Haskell, while formally this is defined using colimits (see
Appendix B.2). Using this concept, we can define a func-
tor mapping an F -algebra (A, a) to the FreeMnd(F )-algebra
(A, lim−→(a ◦ Fa ◦ F 2a ◦ · · · ◦ Fna)), connecting appropriate
endofunctor algebras to monad algebras.

But in the 2-dimensional case, we study the relationship
between Lax-AlgEndo(F ) and Lax-AlgMnd(FreeMnd(F )) and
need contend not only with generating the 1-dimensional
structure map, but also the 2-cells of the lax algebra for a
monad.

To reconcile this with concrete applications, we note that we
do not need to study general 2-endofunctors and 2-monads
on Para. Rather, examples which concern us arise from spe-
cific 1-categorical algebras (group action monads, inductive
types, etc.), which are augmented into 2-monads on Para. As
we prove in Theorem G.10, the lax cells of such algebras are
actually comonoids. The fact that we can duplicate or delete
entries in vectors—the essence of tying weights—is the infor-
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Why This Is Problematic

Suppose I have a datatype Y that is stored in memory using b
bits. Then Y 2 needs 2b bits, Y 3 needs 3b bits, etc. So if Y is
affordable, in all likelihood most powers of Y are affordable.

But in neural networks, everything is vectorized, and the
situation is quite different. Let c be the number of bits used in
our implementation of the reals.

If a vector datatype V requires c · b bits, then V⊗2 needs c · b2
bits, V⊗3 needs c · b3 bits, etc. Higher powers are no longer
affordable!

So classical computing can be dangerous in neural networks.
Simply porting existing ideas won’t do.
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The Big Problem: Attention

The attention mechanism fundamentally changed how we design
neural networks. It was popularized in Attention Is All You Need
(Vaswani et al., 2017) but appeared earlier in Neural Turing
Machines (Graves, Wayne, Danihelka, 2014).
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The Big Problem: Attention

Prior to ChatGPT, attention was severely under-appreciated,
particularly outside of the professional ML community. Academic
work focused on RNNs, ConvNets, and other textbook examples.
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The Big Problem: Attention

Strangely, nobody seems to know a good “purely algebraic”
theory of attention... even though superficially, the math isn’t
complicated.
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Abstract
We introduce "talking-heads attention" - a variation on multi-head attention which includes linear

projections across the attention-heads dimension, immediately before and after the softmax operation.
While inserting only a small number of additional parameters and a moderate amount of additional
computation, talking-heads attention leads to better perplexities on masked language modeling tasks, as
well as better quality when transfer-learning to language comprehension and question answering tasks.

1 Introduction
Neural Attention was introduced by [Bahdanau et al., 2014] as a way of extracting information from variable-
length representations. The Transformer model [Vaswani et al., 2017] uses "multi-head" attention, consisting
of multiple attention layers ("heads") in parallel, each with different projections on its inputs and outputs.
By using a dimensionality reduction in the input projections, the computational cost is kept similar to
that of basic attention. Quality is improved, presumably due to the ability to attend to multiple positions
simultaneously based on multiple different types of relationships.

As noted in [Vaswani et al., 2017]1, taking this process to the extreme (more attention heads projected to
lower dimensionality) becomes counterproductive. We believe that this is due to the fact that the query-vectors
and key-vectors become so low-dimensional that their dot product can no longer constitute an informative
matching function.

In this paper, we introduce a new variant, "talking-heads attention", that addresses this problem by
inserting a learned linear projection across the attention-heads dimension of the attention-logits tensor. This
allows each attention function to depend on all of the keys and queries. We also insert a second such projection
immediately following the softmax.

We show experimentally that inserting these "talking-heads" projections leads to better perplexities on
masked language modeling tasks, as well as better quality when transfer-learning to language comprehension
and question answering tasks.

2 Notation
In our pseudocode, we use capital letters to represent tensors and lower-case letters to represent their
dimensions. Each tensor is followed by a dimension list in brackets. For example, a 4-dimensional image-

∗Noam Shazeer devised the talking-heads architecture, ran the T5 experiments and wrote most of the paper. Zhenzhong Lan
had the initial idea of talking-heads attention, designed and coordinated part of the experiments. Youlong Cheng reproduced
BERT in MeshTensorFlow and run all the talking heads experiments for MeshTensorFlow BERT. Nan Ding ran the ALBERT
experiments. Le Hou visualized and analyzed the learned weights of talking-heads.

1Section (A) of table 3 in [Vaswani et al., 2017]. Also the first sections of tables 1 and 5 of this paper.
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Simple Attention: The Code

We can see that there are only two operations in play: einsum
and softmax. This is true even in more complicated variations of
attention:
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Multi-head Attention
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Roadmap

Algorithmic Alignment

Einsums as Polynomials

Symmetry and Species

Attention and Softmax
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NNs are bad computers

As a rule, neural networks are bad at everything computers have
traditionally been good at: consistency, mathematical
correctness, rule-based reasoning...

In particular, attention-based networks rarely exhibit good
“length generalization”. No matter how good your dataset of
problems is, it will always have bounded length.

I can train a transformer—or almost any network
architecture—to correctly add, say, 6-digit numbers. But will it
be able to add 7-digit numbers? In most cases, no.

In fact, LLMs can’t even count.
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Transformers need glasses! |
Information over-squashing in language tasks
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Abstract

We study how information propagates in decoder-only Transformers, which
are the architectural backbone of most existing frontier large language models
(LLMs). We rely on a theoretical signal propagation analysis—specifically,
we analyse the representations of the last token in the final layer of the
Transformer, as this is the representation used for next-token prediction.
Our analysis reveals a representational collapse phenomenon: we prove that
certain distinct sequences of inputs to the Transformer can yield arbitrarily
close representations in the final token. This effect is exacerbated by the
low-precision floating-point formats frequently used in modern LLMs. As a
result, the model is provably unable to respond to these sequences in different
ways—leading to errors in, e.g., tasks involving counting or copying. Further,
we show that decoder-only Transformer language models can lose sensitivity
to specific tokens in the input, which relates to the well-known phenomenon
of over-squashing in graph neural networks. We provide empirical evidence
supporting our claims on contemporary LLMs. Our theory also points to
simple solutions towards ameliorating these issues.

1 Introduction

In recent years the field of Natural Language Processing (NLP) has been revolutionised
through the introduction of Transformer-based architectures [30]. Large Transformers trained
on some version of next-token prediction, known as Large Language Models (LLMs), have
demonstrated impressive performance across different tasks, including conversational agents
[10, 19], understanding multi-modal inputs [1], and code completion [16]. Most contemporary
LLMs specifically focus on the decoder part of the original Transformer architecture, and
are commonly referred to as decoder-only Transformers. Consequently, we focus primarily
on such models in this paper.
However, despite the impressive performance of Transformers, recent works have uncovered
surprising failures that may point to fundamental issues in their architecture. For instance,

˚Work performed while at Google DeepMind.

38th Conference on Neural Information Processing Systems (NeurIPS 2024).
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Figure 3: Gemini 1.5 being prompted to sum 1 ` ¨ ¨ ¨ ` 1 (Column 1), Count the number of
ones in a sequence of 1s (Column 2), Count the number of ones in a sequence of ones and
zeroes (the sequence is a Bernoulli sequence with probability of sampling a one being 0.7)
(Column 3), and to counter the number of times a word appears in a sentence (Column 4).

providing concrete evidence that motivates the theoretical analysis presented in the following
sections.
We start by providing motivating examples that show surprisingly simple failure cases of
frontier LLMs specifically on copying (Section 3.1) and counting (Section 3.2) tasks. By
copying we specifically mean tasks that involve the ‘copying’ or ‘recalling’ of a single or
multiple tokens from the prompt. Instead, by counting, we mean the task of counting how
many times a specific token appears in a sequence. We focus our evaluation on Gemini 1.5
[10] as our frontier LLM (referred as Gemini) and later analyse the internal representations
of the open-sourced Gemma model [27]. The goal is to showcase intriguing failure cases
which will motivate our signal propagation analysis.

3.1 Copying

In this Section, we present surprising results on simple copying tasks. In particular, we focus
on tasks that involve the copying of a single token — i.e. what is the token occurring at
a particular position? The copy of a single token is in principle the most straightforward
type of copying task, but still requires the LLM to accurately identify the token based on a
prompt and to then propagate its information correctly.
Importantly, we study cases in which the LLM is prompted to copy tokens either at the start
or at the end of a sequence. We avoid tasks that involve the copy of tokens at the ‘n-th’
position as most frontier LLMs do not have absolute positional information, making it very
challenging for them to solve tasks that require absolute position. We focus on tasks that
involve sequences of ‘zeros’ and ‘ones’ growing in length with specific patterns.
In Figure 2 (a), we prompt Gemini to copy the last element of a sequence ‘1 . . . 10’ or the
first element of a sequence ‘01 . . . 1’. The answer for both is zero, but we progressively grow
the number of ones. We observe how the task seems considerably easier when asked to return
the first rather than the last element. Surprisingly, already at a sequence length of only 300
elements, Gemini incorrectly starts to output ‘one’ when trying to copy the last element. In
Figure 2 (b), we show that providing hints in the form of: “ *Hint* It’s not necessarily a 1,
check carefully”, helps significantly with the performance. Finally, in Figure 2 (c), we show
that replacing the constant sequence of ones with alternating ones and zeros seems to also
help. We refer to the Appendix (Section C.1) for further details on the experiments.
These three motivating experiments seem to point towards a type of vanishing of information,
caused by the growing number of ones dominating the sequence. Interestingly, such a
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Language Models Use Trigonometry to Do Addition

Subhash Kantamneni 1 Max Tegmark 1

Abstract

Mathematical reasoning is an increasingly impor-
tant indicator of large language model (LLM)
capabilities, yet we lack understanding of how
LLMs process even simple mathematical tasks.
To address this, we reverse engineer how three
mid-sized LLMs compute addition. We first dis-
cover that numbers are represented in these LLMs
as a generalized helix, which is strongly causally
implicated for the tasks of addition and subtrac-
tion, and is also causally relevant for integer divi-
sion, multiplication, and modular arithmetic. We
then propose that LLMs compute addition by ma-
nipulating this generalized helix using the “Clock”
algorithm: to solve a + b, the helices for a and
b are manipulated to produce the a + b answer
helix which is then read out to model logits. We
model influential MLP outputs, attention head out-
puts, and even individual neuron preactivations
with these helices and verify our understanding
with causal interventions. By demonstrating that
LLMs represent numbers on a helix and manipu-
late this helix to perform addition, we present the
first representation-level explanation of an LLM’s
mathematical capability.

1. Introduction
Large language models (LLMs) display surprising and sig-
nificant aptitude for mathematical reasoning (Ahn et al.,
2024; Satpute et al., 2024), which is increasingly seen as
a benchmark for LLM capabilities (OpenAI; Glazer et al.,
2024). Despite LLMs’ mathematical proficiency, we have
limited understanding of how LLMs process even simple
mathematical tasks like addition. Understanding mathemat-
ical reasoning is valuable for ensuring LLMs’ reliability,
interpretability, and alignment in high-stakes applications.

In this study, we reverse engineer how GPT-J, Pythia-6.9B,
and Llama3.1-8B compute the addition problem a+ b for
a, b ∈ [0, 99]. Remarkably, we find that LLMs use a form

1Massachusetts Institute of Technology. Correspondence to:
Subhash Kantamneni <subhashk@mit.edu>.
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Figure 1. Illustrating the Clock algorithm. We find that LLMs
represent numbers on a helix. When computing the addition prob-
lem a + b, LLMs rotate the a and b helices, as if on a clock, to
create the a+ b helix and read out the final answer.

of the “Clock” algorithm to compute addition, which was
previously proposed by Nanda et al. (2023a) as a mecha-
nistic explanation of how one layer transformers compute
modular addition (and later named by Zhong et al. (2023)).

To compute a + b, all three LLMs represent a and b as
a helix on their tokens and construct helix(a + b) on the
last token, which we verify with causal interventions. We
then focus on how GPT-J implements the Clock algorithm
by investigating MLPs, attention heads, and even specific
neurons. We find that these components can be understood
as either constructing the a+ b helix by manipulating the a
and b helices, or using the a+ b helix to produce the answer
in the model’s logits. We visualize this procedure in Fig. 1
as rotating the dial of a clock.

Our work is in the spirit of mechanistic interpretability (MI),
which attempts to reverse engineer the functionality of ma-
chine learning models. However, most LLM MI research
focuses either on identifying circuits, which are the min-
imal set of model components required for computations,
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The CLRS Benchmark

How I got involved: Learning dynamic programming algorithms.

(Veličković et al. 2022) introduced an open-source benchmark
for algorithmic tasks, e.g. sorting, pathfinding, knapsack.

They used graphs as a common language to phrase these
algorithms in terms of datatypes that could be encoded into, or
decoded out of, neural networks.

Remember, the goal isn’t just to model a dataset, but to
extrapolate correctly.
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CLRS
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Algorithmic Alignment

Which networks generalize properly?

Previously, (Xu et al. 2019) introduced the idea of “alignment”,
the obvious-but-not-obvious fact that networks do better at
length generalization if they resemble the code they’re trying to
learn.

This paper was the first clue that there was mathematical
structure in algorithms that could inform neural network design.

Andrew Dudzik Tensor Species



Algorithmic Alignment
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Graph Neural Networks are Dynamic Programmers

Andrew Dudzik∗
DeepMind
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Abstract

Recent advances in neural algorithmic reasoning with graph neural networks
(GNNs) are propped up by the notion of algorithmic alignment. Broadly, a neural
network will be better at learning to execute a reasoning task (in terms of sam-
ple complexity) if its individual components align well with the target algorithm.
Specifically, GNNs are claimed to align with dynamic programming (DP), a gen-
eral problem-solving strategy which expresses many polynomial-time algorithms.
However, has this alignment truly been demonstrated and theoretically quantified?
Here we show, using methods from category theory and abstract algebra, that
there exists an intricate connection between GNNs and DP, going well beyond the
initial observations over individual algorithms such as Bellman-Ford. Exposing
this connection, we easily verify several prior findings in the literature, produce
better-grounded GNN architectures for edge-centric tasks, and demonstrate empiri-
cal results on the CLRS algorithmic reasoning benchmark. We hope our exposition
will serve as a foundation for building stronger algorithmically aligned GNNs.

1 Introduction

One of the principal pillars of neural algorithmic reasoning [27] is training neural networks that
execute algorithmic computation in a high-dimensional latent space. While this process is in itself
insightful, and can lead to stronger combinatorial optimisation systems [21], it is valuable in terms
of expanding the applicability of classical algorithms. Evidence of this value are emerging, with
pre-trained algorithmic reasoners utilised in implicit planning [11] and self-supervised learning [28].

A fundamental question in this space is: which architecture should be used to learn a particular
algorithm (or collection of algorithms [36])? Naturally, we seek architectures that have low sample
complexity, as they will allow us to create models that generalise better with fewer training examples.

The key theoretical advance towards achieving this aim has been made by [37]. Therein, the authors
formalise the notion of algorithmic alignment, which states that we should favour architectures
that align better to the algorithm, in the sense that we can separate them into modules, which
individually correspond to the computations of the target algorithm’s subroutines. It can be proved
that architectures with higher algorithmic alignment will have lower sample complexity in the NTK
regime [20]. Further, the theory of [37] predicts that graph neural networks (GNNs) algorithmically
align with dynamic programming [3, DP]. The authors demonstrate this by forming an analogy to the
Bellman-Ford algorithm [2].

Since DP is a very general class of problem-solving techniques that can be used to express many
classical algorithms, this finding has placed GNNs as the central methodology for neural algorithmic
execution [7]. However, it quickly became apparent that it is not enough to just train any GNN—for
many algorithmic tasks, careful attention is required. Several papers illustrated special cases of GNNs
that align with sequential algorithms [31], linearithmic sequence processing [16], physics simulations

∗Equal contribution.

36th Conference on Neural Information Processing Systems (NeurIPS 2022).
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Polynomial Execution Structure

General Execution:

Bellman-Ford:
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The Integral Transform

If R is a commutative semiring:
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Commutative Semirings

Proposition

The category of finite polynomials is the Lawvere theory for
commutative semirings. i.e. every commutative semiring in a
monoidal category (C,⊗) is uniquely described by a monoidal
functor (FinPoly,+)→ (C,⊗).

This is the fancy way to say: I can plug numbers into
polynomials.

Andrew Dudzik Tensor Species



Algebraic Alignment is Algorithmic Alignment

We showed that picking the correct semiring was important for
generalization.

Classical algorithms typically use some variant of the tropical
semiring (R ∪ {−∞},+,max), while neural networks, by
convention, operate in (R,×,+).

Our best algorithmic networks still rely on tropical operations, or
smooth approximations of them.
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Abstract

Graph neural networks (GNNs) have been shown to be highly sensitive to the
choice of aggregation function. While summing over a node’s neighbours can
approximate any permutation-invariant function over discrete inputs, Cohen-Karlik
et al. [2020] proved there are set-aggregation problems for which summing cannot
generalise to unbounded inputs, proposing recurrent neural networks regularised
towards permutation-invariance as a more expressive aggregator. We show that
these results carry over to the graph domain: GNNs equipped with recurrent aggre-
gators are competitive with state-of-the-art permutation-invariant aggregators, on
both synthetic benchmarks and real-world problems. However, despite the benefits
of recurrent aggregators, their OpV q depth makes them both difficult to parallelise
and harder to train on large graphs. Inspired by the observation that a well-behaved
aggregator for a GNN is a commutative monoid over its latent space, we propose a
framework for constructing learnable, commutative, associative binary operators.
And with this, we construct an aggregator of Oplog V q depth, yielding exponen-
tial improvements for both parallelism and dependency length while achieving
performance competitive with recurrent aggregators. Based on our empirical obser-
vations, our proposed learnable commutative monoid (LCM) aggregator represents
a favourable tradeoff between efficient and expressive aggregators.

1 Introduction
When dealing with irregularly structured data [Bronstein et al., 2021], neural networks typically
need to process data of arbitrary sizes. In such scenarios, the heart of the network is arguably its
aggregation function—a function that reduces a collection of neighbour feature vectors into a single
vector. Indeed, graph neural networks (GNNs) have been shown empirically to be highly sensitive to
the choice of aggregator [Veličković et al., 2019, Richter and Wattenhofer, 2020], with a wide range
of aggregators (e.g. sum, max and mean) and their combinations [Corso et al., 2020] in common use.

In this paper, we offer a new perspective for studying aggregators, with clear theoretical and practical
implications. It can be said that the true objective of choosing an aggregator is to make it as simple as
possible (i.e. to minimise the sample complexity required) for the parameters of the GNNs to exploit
that aggregator in a way that makes it easier to solve the learning problem. Specifically, we study this
in the context of learning to align the GNN’s aggregator to a desirable target aggregation function
(as defined in [Xu et al., 2019a]). It is already a known fact that higher alignment implies reduced
sample complexity [Xu et al., 2019a], and in the context of algorithmic reasoning, it is well-known
that a neural network will be better at learning to imitate an algorithm if its aggregator matches that
of the algorithm it is trying to imitate [Veličković et al., 2019, Xu et al., 2020].

However, beyond the realm of learning a task with a concrete aggregator, many real-world problems
offer more challenging settings, wherein the optimal aggregator to learn is not clear—but unlikely
to be a trivial fixed aggregator. To formalise this notion, while preserving the useful assumption of
permutation invariance, we leverage commutative monoids as a formalism for both the aggregators
supported by GNNs and the (potentially unknown) target aggregators one would wish to align to.

E. Ong and P. Veličković, Learnable Commutative Monoids for Graph Neural Networks. Proceedings of the
First Learning on Graphs Conference (LoG 2022), PMLR 198, Virtual Event, December 9–12, 2022.

ar
X

iv
:2

21
2.

08
54

1v
1 

 [
cs

.L
G

] 
 1

6 
D

ec
 2

02
2

Learning Algebraic Structure



Roadmap

Algorithmic Alignment

Einsums as Polynomials

Symmetry and Species

Attention and Softmax

Andrew Dudzik Tensor Species



Example Einsums

Einsum String Operation Equation

'ii->' trace
∑

i aii

'ii->i' diagonal aii

'i,j->ij' outer product aibj

'ij->j' sum over first axis
∑

i aij

'ij->ji' matrix transpose aji

'ij,jk->ik' matrix multiplication
∑

j aijbjk
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Einsums

Einsums represent the bulk of shape-changing operations in
neural networks.
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Einsums as Polynomials

They can be described using polynomials:
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Einsums as Polynomials

They can also be described more concisely using “parametric
spans” (Bergomi, Vertechi, 2022)):
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Einsums: Closed Under Gradients

Exercise

The gradient flow through an einsum is an einsum. Hint:
Permute the feet!
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Tensor Sizes are Hyperparameters
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The Symmetric Group

The nature of distributing simple computations across hundreds
or thousands or cores means that we are always conscious of the
symmetric group.

Permutation equivariance is fundamental to performant
architectures. Transformers, in particular, rely on symmetry...
even when there is none.
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LLMs Are Very Symmetric

Only symmetry breaking is the causal mask:

+


0 0 · · · 0
−∞ 0 · · · 0
...

...
. . .

...
−∞ −∞ · · · 0


We have to inject positional encodings to reconstruct the
ordering, it’s not respected in the computation! Yet this is state
of the art.

Even though tokens come in a list, it’s better to treat them as a
bag.
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Some Other Work

Deep Sets (Zaheer et al., 2017) emphasized the importance, in
Graph Neural Networks, of invariance with respect to the
symmetric group.

Natural Graph Networks (de Haan, Cohen, Welling, 2020)
emphasized the importance of equivariance with respect to graph
isomorphisms, by looking at functors out of the groupoid of
graphs.
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Set Species

Definition

A (finite) set species is a functor A : core(FinSet)→ FinSet.

Equivalently, it is a sequence of finite sets A0,A1, . . ., together
with, for each n, an action of the symmetric group Sn on An.

Example

Let An be the set of cyclic orderings of {1, . . . , n}. We have an
action of Sn on An given by
π · (a1 a2 . . . an) = (π(a1) π(a2) . . . π(an)), making A0,A1, . . .
into a set species.
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Vector Species

Definition

A (finite, real) vector species is a functor
V : core(FinSet)→ FinVect.

Equivalently, it is a sequence of finite-dimensional real vector
spaces V0,V1, . . ., together with, for each n, a linear action of
the symmetric group Sn on Vn.
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Multivariate species

We also want species in d variables, i.e.

core(FinSet)d → FinSet

core(FinSet)d → FinVect

We can use these to better formalize einsums. Consider the
3-variable species I (a, b, c) = a, J(a, b, c) = b, and
K (a, b, c) = c.
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Matmul: A Polynomial in 3-variable Species

einsum('ij,jk->ik')

(RI ⊗ RJ)⊕ (RJ ⊗ RK )⇝ RI ⊗ RK

Andrew Dudzik Tensor Species



Matmul: A Trivalent Span in 3-variable Species

einsum('ij,jk->ik')

(RI ⊗ RJ)⊕ (RJ ⊗ RK )⇝ RI ⊗ RK
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Decategorifying Species

Definition

If A0,A1, . . . is a set species, and each An is finite, we define the
generating function associated to A as follows:

(#A)(x) :=
∑
n≥0

#An

n!
xn

Generating functions are nice to have around as a “sanity
check”. Interesting properties of GFs usually mean interesting
properties of species.

The binomial theorem:

ex+y = exey
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Species and polynomials

The generating function is related to the groupoid cardinality of
the analytic functor Set→ Set:

Â(X ) :=
∑
n≥0

An × X n

Sn

N.B. this correspondence gives an identification of polynomial
functors with species where each group action is free.
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Some Basic Datatypes

Counting Problem Species Generating Function

No Data E ex

Is Empty 1 1

Is Nonempty E− 1 ex − 1

Is Singleton X x

Pick One X · E xex

Pick Two (1 + X) · X · E (1 + x)xex

Pick Two (unique) X2 · E x2ex

Pick a Total Order L 1
1−x

Pick a Partition E ◦ (E− 1) ee
x−1

Pick a Graph G nonconvergent
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Some Basic Datatypes

Datatype Memory (Discrete) Memory (Vectorized)

Pick One log n c · n
Pick Two 2 log n c · n2

Pick a Total Order n log n c · n!

Pick a Graph log 2 ·
(n
2

)
c · 2(n2)
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The Cauchy Product

Cauchy product: f (x), g(x) 7→ f (x)g(x)
This corresponds to dividing a set in two pieces, and giving the
first structure to the first piece, and the second structure to the
second piece.

Example

How many ways can I divide a set into two pieces, such that the
first piece is nonempty, and the second piece has exactly one
element?

Answer

“This set is nonempty” is described by ex − 1, “this set has one
element” is described by x , so the answer is (ex − 1) · x .
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The Cauchy Product

(F · G )[n] :=
∑

k
∐

l=n

F [k]× G [l ]

=
∑

k+l=n

(
n

k

)
F [k]× G [l ]
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Cauchy Bimonoids

Notably, it is often the case that “traversable” datatypes are
Cauchy bimonoids. For example, the species of graphs can be
given a simple monoid structure sending two graphs to their
disjoint union:

G[S ]×G[T ]→ G[S + T ]

... and a simple comonoid structure sending a graph to its
restrictions along two complementary subsets:

G[S + T ]→ G[S ]×G[T ]

Proposition

A Cauchy bimonoid in vector species with V0 = R is Hopf, i.e.
has an antipode.
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The Substitution Product

Substitution product: f (x), g(x) 7→ f (g(x))

Example

How many ways can I form a nonempty partition of a set into
nonempty sets?

Answer

“This set is nonempty” is described by ex − 1, so we compose
this with itself to get ee

x−1 − 1.

Andrew Dudzik Tensor Species



The Substitution Product

(F ◦ G )[n] :=
∑
λ⊢n

F [|λ|]×
∏
i∈λ

G [i ]
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Operads

A monoid with respect to the substitution product is called a
(symmetric) operad.

Example

Let ∆(n) be the set of probability distributions on {1, . . . , n}. ∆
is an operad with respect to the composition law given by
forming joint distributions:

∆(k)×∆(n1)× · · · ×∆(nk)→ ∆(n1 + · · ·+ nk)

(pi )i , (q1j)j , . . . , (qkj)j 7→ (piqij)ij

∆ is called the simplicial operad, and it will come up a bit later.
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Much simpler example: monoids

If M is a monoid in sets, we can upgrade M to an operad by
identifying it with the species M[1] = M, M[k] = 0 for k ̸= 1.

i.e. monoids (in particular, groups) are operads where every
operation has exactly one output.
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Martha (m=3) Nancy (n=1)

Nancy Pays Attention to Martha
a story of neural cooperation
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Three forms of picking

Since we cannot eliminate the possibility of multiple matches, a
“picking” strategy is needed. There are three basic strategies:

Introduce a tie-breaking mechanism. This could be a
predetermined order on Martha’s outputs, or somehow
inferred from the query and keys. Many dynamic
programming algorithms depend on handling tie-breaking
consistently.

Sample from a probability distribution. This is elegant but
introduces non-determinism.

Take the expected value over a probability distribution. This
is the preferred method in the vectorized setting, but is
usually nonsensical in classical programs.
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Attention in shapes

Values: m × l

Keys: m × k

Queries: n × k

Matching: (n × k)× (k ×m)→ n ×m

Selection: n ×m→ n ×m

Sampling: (n ×m)× (m × l)→ n × l

Note that we are conjugating the selection function by a shape
change.
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The Standard Selector: softmax

The textbook way to produce a probability distribution from a
vector:

softmax(L1, . . . , Ln) := (
eL1∑
j e

Lj
, . . . ,

eLn∑
j e

Lj
)
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Hot and cold softmax

We generally scale the softmax inputs by a thermodynamic
parameter β > 0, the “inverse temperature”. This is exactly the
Boltzmann distribution, if you think of the Li as negative energy.

Note the behavior for special values of β:

softmax(βLi )

β →∞ argmax (almost)

β = 0 uniform

β → −∞ argmin (almost)
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Masked softmax

Probability distributions are often masked, by replacing logits
with −∞, guaranteeing that the associated probability is zero.

In this setting, we can extend softmax to a surjective function:

softmax : [−∞,∞)n \ {(−∞, . . . ,−∞)} → ∆(n)

We have softmax(Li ) = softmax(L′i ) if and only if there exists
t ∈ R with L′i = Li + t for all i . This looks familiar...
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Curiosity 1: Softmax and tropical projective space

Softmax actually exhibits the standard cylinder over tropical
projective space:

T = ([−∞,∞),+,max)

Pn
T := (Tn \ 0)/(T \ 0)

softmax : An
T \ 0→ Pn

T

The tropicals have been spotted several times in LLMs, e.g.
(Gaubert, Vlassopoulos, 2024).
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Curiosity 2: Softmax maximizes entropy

Proposition

Fix some L ∈ R.

Given a constraint
∑

i Li = L, there exists β = β(L) such that
softmax(βLi ) maximizes the Shannon entropy S = −∑

i pi log pi .

Proof.

−β is the Lagrange multiplier ∂S
∂L . See a thermodynamics text or

calculus student for details.

So however much “total energy” is represented in the softmax
distribution, that distribution is maximally uncertain among
distributions with the same energy.
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Entropy is a 1-cocycle for ∆

Proposition

(Shannon) Every 1-cocycle ∆→ R is a scalar multiple of the
Shannon entropy.

This comes from interpreting the chain rule for conditional
entropy as a cocycle condition:

H(X ,Y ) = H(X ) + H(Y |X )
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Google DeepMind

petarv@google.com

Abstract
State-of-the-art neural algorithmic reasoners make use of message passing in
graph neural networks (GNNs). But typical GNNs blur the distinction between
the definition and invocation of the message function, forcing a node to send
messages to its neighbours at every layer, synchronously. When applying GNNs
to learn to execute dynamic programming algorithms, however, on most steps
only a handful of the nodes would have meaningful updates to send. One, hence,
runs the risk of inefficiencies by sending too much irrelevant data across the graph.
But more importantly, many intermediate GNN steps have to learn the identity
functions, which is a non-trivial learning problem. In this work, we explicitly
separate the concepts of node state update and message function invocation. With
this separation, we obtain a mathematical formulation that allows us to reason
about asynchronous computation in both algorithms and neural networks. Our
analysis yields several practical implementations of synchronous scalable GNN
layers that are provably invariant under various forms of asynchrony.

1 Introduction

The message passing primitive—performing computation by aggregating information sent between
neighbouring entities [1, 2]—is known to be remarkably powerful. Message passing is the core
primitive in graph neural networks [3, GNNs], a prominent family of deep learning models. Owing
to the ubiquity of graphs as an abstraction for describing the structure of systems, GNNs have
enjoyed immense popularity across both scientific [4] and industrial applications, including novel
drug screening [5, 6], designing next-generation machine learning chips [7], serving travel-time
estimates [8], particle physics [9], and settling long-standing problems in pure mathematics [10–12].

Another active area of research for GNNs is neural algorithmic reasoning [13, NAR]. NAR seeks to
design neural network architectures that capture classical computation, largely by learning to execute
it [14]. This is an important problem in the light of today’s large-scale models, as they tend to struggle
in performing exactly the kinds of computations that classical algorithms can trivially capture [15].

The use of GNNs in NAR is largely due to algorithmic alignment [16]: the observation that, as we
increase the structural similarity between a neural network and an algorithm, it will be able to learn to
execute this algorithm with improved sample complexity. Here, we make novel contributions to the
theory of algorithmic alignment. Our approach “zooms in” on the theoretical analysis in [17], which
analysed computations—of both algorithms and GNNs—globally. Instead, we center our discussion
on a node-centric1 view: analysing computations around individual nodes in the graph, in isolation.

This view allows us to study message passing under various synchronisation regimes and can help us
identify choices of message functions that better align with target algorithms, in a manner that was
not possible under previous frameworks—indeed, it allows us to theoretically justify the unreasonable
effectiveness of architectures such as PathGNNs [20]. We refer to our new framework as asynchronous
algorithmic alignment, and formalise it using tools of category theory, monoid actions, and cocycles.
To visualise what executing an asynchronous GNN might look like, refer to Figure 1.

1As we will expand on later in the work, node is a misnomer for what we precisely mean, but to improve the
exposition we will rely on this term for now.

Preprint. Preliminary work.
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Cocycles as “carry digits”

Inspired by (Isaksen, 2002), we previously wrote a paper about
asynchronous computation, where we identified the 1-cocycle
condition as the condition that it was equivalent to aggregate
before or after a carry:

δgh(s) = δg (hs) + δh(s)

In curried form:

D(gh) = D(g)h + D(h)
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Curiosity 3: Entropy as Carrying?

When a monoid M acts on a state S with outputs A, a
“coherent carry” is just a (right) 1-cocycle M → [S ,A], or
equivalently a (left) 1-cocycle Mop → [S ,A].

So in principle, we can interpret entropy as a carry for an action
of the simplicial co-operad ∆op, e.g.:

a 7→ (p1a, . . . , pna)
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My Question to Mathematicians

We saw that our canonical selection function, softmax, is
maximizing a 1-cocycle for an operad.

Question

Why are we doing this?
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Thanks for listening!
Questions?
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