$\mathscr{V}\text{-}\mathsf{graded}$ categories as a setting for enrichment and actions of monoidal categories \mathscr{V}

Rory Lucyshyn-Wright

Brandon University

Topos Institute Colloquium, April 24, 2025

Some conventional perspectives on enrichment and strength:

E

Some conventional perspectives on enrichment and strength:

• The theory of categories enriched in a monoidal category $\mathscr V$ is usually developed under the assumption $\mathscr V$ is biclosed.

< 回 > < 回 > < 回 >

Some conventional perspectives on enrichment and strength:

- The theory of categories enriched in a monoidal category $\mathscr V$ is usually developed under the assumption $\mathscr V$ is biclosed.
- Strong endofunctors $F: \mathscr{V} \to \mathscr{V}$ [Kock]

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

Some conventional perspectives on enrichment and strength:

- The theory of categories enriched in a monoidal category $\mathscr V$ is usually developed under the assumption $\mathscr V$ is biclosed.
- Strong endofunctors $F: \mathcal{V} \to \mathcal{V}$ [Kock] can be defined even for arbitrary monoidal categories \mathcal{V} ,

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Some conventional perspectives on enrichment and strength:

- The theory of categories enriched in a monoidal category $\mathscr V$ is usually developed under the assumption $\mathscr V$ is biclosed.
- Strong endofunctors F : 𝒴 → 𝒴 [Kock] can be defined even for arbitrary monoidal categories 𝒴, as they are *lax morphisms* of 𝒴-actegories.

Some conventional perspectives on enrichment and strength:

- The theory of categories enriched in a monoidal category $\mathscr V$ is usually developed under the assumption $\mathscr V$ is biclosed.
- Strong endofunctors F : 𝒴 → 𝒴 [Kock] can be defined even for arbitrary monoidal categories 𝒴, as they are *lax morphisms* of 𝒴-actegories.
- Every monoidal category \mathscr{V} embeds into a biclosed monoidal category $\hat{\mathscr{V}} = [\mathscr{V}^{\mathsf{op}}, \mathsf{SET}]$ (under Day convolution).

・ 同 ト ・ ヨ ト ・ ヨ ト …

Some conventional perspectives on enrichment and strength:

- The theory of categories enriched in a monoidal category $\mathscr V$ is usually developed under the assumption $\mathscr V$ is biclosed.
- Strong endofunctors F : 𝒴 → 𝒴 [Kock] can be defined even for arbitrary monoidal categories 𝒴, as they are *lax morphisms* of 𝒴-actegories.
- Every monoidal category \mathscr{V} embeds into a biclosed monoidal category $\hat{\mathscr{V}} = [\mathscr{V}^{\mathsf{op}}, \mathsf{SET}]$ (under Day convolution).
- Use of 𝒱-enriched bifunctors and functor categories depends on assuming 𝒱 is symmetric (or more generally *normal duoidal* [Garner and López Franco]).

(日本) (日本) (日本)

Some conventional perspectives on enrichment and strength:

- The theory of categories enriched in a monoidal category $\mathscr V$ is usually developed under the assumption $\mathscr V$ is biclosed.
- Strong endofunctors F : 𝒴 → 𝒴 [Kock] can be defined even for arbitrary monoidal categories 𝒴, as they are *lax morphisms* of 𝒴-actegories.
- Every monoidal category \mathscr{V} embeds into a biclosed monoidal category $\hat{\mathscr{V}} = [\mathscr{V}^{\mathsf{op}}, \mathsf{SET}]$ (under Day convolution).
- Use of 𝒱-enriched bifunctors and functor categories depends on assuming 𝒱 is symmetric (or more generally *normal duoidal* [Garner and López Franco]).
- $\mathscr{V}\text{-enriched profunctors}$ (or $\mathscr{V}\text{-modules})$ are a basic notion that is defined directly,

Some conventional perspectives on enrichment and strength:

- The theory of categories enriched in a monoidal category $\mathscr V$ is usually developed under the assumption $\mathscr V$ is biclosed.
- Strong endofunctors F : 𝒴 → 𝒴 [Kock] can be defined even for arbitrary monoidal categories 𝒴, as they are *lax morphisms* of 𝒴-actegories.
- Every monoidal category \mathscr{V} embeds into a biclosed monoidal category $\hat{\mathscr{V}} = [\mathscr{V}^{\mathsf{op}}, \mathsf{SET}]$ (under Day convolution).
- Use of 𝒱-enriched bifunctors and functor categories depends on assuming 𝒱 is symmetric (or more generally *normal duoidal* [Garner and López Franco]).
- 𝒱-enriched profunctors (or 𝒱-modules) are a basic notion that is defined directly, but if 𝒱 is symmetric then they are examples of bifunctors.

・ロト ・回ト ・ヨト ・ヨト

E

◆□▶ ◆□▶ ◆臣▶ ◆臣▶

 \mathscr{V} -graded categories (for a monoidal category \mathscr{V})

Э

<ロト <回ト < 回ト < 回ト < 回ト -

$\mathscr{V}\text{-}\mathsf{graded}$ categories (for a monoidal category $\mathscr{V})$ are categories enriched in $\hat{\mathscr{V}}$,

イロト イボト イヨト イヨト

 \mathscr{V} -graded categories (for a monoidal category \mathscr{V}) are categories enriched in $\hat{\mathscr{V}}$, but they admit a direct and elementary definition [Wood].

A (1) > A (2) > A

 \mathscr{V} -graded categories (for a monoidal category \mathscr{V}) are categories enriched in $\hat{\mathscr{V}}$, but they admit a direct and elementary definition [Wood].

 Also called *large V*-categories [Wood], procategories [Kelly-Labella-Schmitt-Street], and *locally V*-graded categories [Levy].

(4月) (日) (日)

 \mathscr{V} -graded categories (for a monoidal category \mathscr{V}) are categories enriched in $\hat{\mathscr{V}}$, but they admit a direct and elementary definition [Wood].

- Also called *large V*-categories [Wood], procategories [Kelly-Labella-Schmitt-Street], and *locally V*-graded categories [Levy].
- \mathscr{V} -graded categories subsume both \mathscr{V} -enriched categories and \mathscr{V} -actegories [Wood].

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

E

・ロト ・回ト ・ヨト ・ヨト

 \bullet introduce $\mathscr V\text{-}\mathsf{graded}$ categories and their basic theory, and

Э

イロト イヨト イヨト

- \bullet introduce $\mathscr V\text{-}\mathsf{graded}$ categories and their basic theory, and
- show that $\mathscr{V}\text{-}\mathsf{graded}$ categories for an arbitrary monoidal category \mathscr{V} admit a theory of bifunctors and functor categories,

< 同 ▶ < ∃ ▶ < ∃ ▶

- \bullet introduce $\mathscr V\text{-}\mathsf{graded}$ categories and their basic theory, and
- show that 𝒱-graded categories for an arbitrary monoidal category 𝒱 admit a theory of bifunctors and functor categories, by involving a notion of *bigraded category*.

・ 同 ト ・ ヨ ト ・ ヨ ト

- \bullet introduce $\mathscr V\text{-}\mathsf{graded}$ categories and their basic theory, and
- show that 𝒱-graded categories for an arbitrary monoidal category 𝒱 admit a theory of bifunctors and functor categories, by involving a notion of *bigraded category*.

The material in this talk is treated in

< 回 > < 回 > < 回 >

- \bullet introduce $\mathscr V\text{-}\mathsf{graded}$ categories and their basic theory, and
- show that 𝒴-graded categories for an arbitrary monoidal category 𝒴 admit a theory of bifunctors and functor categories, by involving a notion of *bigraded category*.

The material in this talk is treated in

R. B. B. Lucyshyn-Wright, \mathscr{V} -graded categories and \mathscr{V} - \mathscr{W} -bigraded categories: Functor categories and bifunctors over non-symmetric bases, Preprint (2025). arXiv:2502.18557

э

The **reverse** of \mathscr{V} is the monoidal category $\mathscr{V}^{\mathsf{rev}} = (\mathscr{V}, \otimes_{_{\mathsf{rev}}}, I)$ with $X \otimes_{_{\mathsf{rev}}} Y := Y \otimes X$.

3

イロト 人間ト イヨト イヨト

The **reverse** of \mathscr{V} is the monoidal category $\mathscr{V}^{\mathsf{rev}} = (\mathscr{V}, \otimes_{\mathsf{rev}}, I)$ with $X \otimes_{\mathsf{rev}} Y := Y \otimes X$.

A (left) \mathscr{V} -actegory is a category \mathscr{C} equipped with a strong monoidal functor $\mathscr{V} \to [\mathscr{C}, \mathscr{C}]$,

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

The **reverse** of \mathscr{V} is the monoidal category $\mathscr{V}^{\mathsf{rev}} = (\mathscr{V}, \otimes_{\mathsf{rev}}, I)$ with $X \otimes_{\mathsf{rev}} Y := Y \otimes X$.

A (left) \mathscr{V} -actegory is a category \mathscr{C} equipped with a strong monoidal functor $\mathscr{V} \to [\mathscr{C}, \mathscr{C}]$, whose transpose $\mathscr{V} \times \mathscr{C} \to \mathscr{C}$ we write as a left action $(X, A) \mapsto X.A$.

・ロト ・ 雪 ト ・ ヨ ト ・

The **reverse** of \mathscr{V} is the monoidal category $\mathscr{V}^{\mathsf{rev}} = (\mathscr{V}, \otimes_{\mathsf{rev}}, I)$ with $X \otimes_{\mathsf{rev}} Y := Y \otimes X$.

A (left) \mathscr{V} -actegory is a category \mathscr{C} equipped with a strong monoidal functor $\mathscr{V} \to [\mathscr{C}, \mathscr{C}]$, whose transpose $\mathscr{V} \times \mathscr{C} \to \mathscr{C}$ we write as a left action $(X, A) \mapsto X.A$.

A **right** \mathscr{V} -actegory is a left \mathscr{V}^{rev} -actegory,

・ロト ・ 何 ト ・ ヨ ト ・ ヨ ト

The **reverse** of \mathscr{V} is the monoidal category $\mathscr{V}^{\mathsf{rev}} = (\mathscr{V}, \otimes_{\mathsf{rev}}, I)$ with $X \otimes_{\mathsf{rev}} Y := Y \otimes X$.

A (left) \mathscr{V} -actegory is a category \mathscr{C} equipped with a strong monoidal functor $\mathscr{V} \to [\mathscr{C}, \mathscr{C}]$, whose transpose $\mathscr{V} \times \mathscr{C} \to \mathscr{C}$ we write as a left action $(X, A) \mapsto X.A$.

A **right** \mathscr{V} -**actegory** is a left $\mathscr{V}^{\mathsf{rev}}$ -actegory, whose associated functor $\mathscr{C} \times \mathscr{V} \to \mathscr{C}$ we write as a right action $(A, X) \mapsto A.X$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ - 日 ・

A lax morphism of \mathscr{V} -actegories $F:\mathscr{C}\to\mathscr{D}$

<ロト <回ト < 回ト < 回ト -

A lax morphism of \mathscr{V} -actegories $F : \mathscr{C} \to \mathscr{D}$ is a functor equipped with morphisms $\lambda_{XA} : X.FA \to F(X.A)$ in \mathscr{D} $(X \in ob \mathscr{V}, A \in ob \mathscr{C})$ satisfying certain axioms.

・ロト ・ 一 マ ・ コ ト ・ 日 ト

A lax morphism of \mathscr{V} -actegories $F : \mathscr{C} \to \mathscr{D}$ is a functor equipped with morphisms $\lambda_{XA} : X.FA \to F(X.A)$ in \mathscr{D} $(X \in ob \mathscr{V}, A \in ob \mathscr{C})$ satisfying certain axioms.

The 2-category of (left) \mathscr{V} -actegories:

*_∜*ACT

・ロト ・ 一 ・ ・ ヨ ・ ・ 日 ・

A lax morphism of \mathscr{V} -actegories $F : \mathscr{C} \to \mathscr{D}$ is a functor equipped with morphisms $\lambda_{XA} : X.FA \to F(X.A)$ in \mathscr{D} $(X \in ob \mathscr{V}, A \in ob \mathscr{C})$ satisfying certain axioms.

The 2-category of (left) \mathscr{V} -actegories:

*_ψ*ACT

The 2-category of right \mathscr{V} -actegories:

 $\mathsf{ACT}_{\mathscr{V}} := {}_{\mathscr{V}^\mathsf{rev}}\mathsf{ACT}$

A (left) \mathscr{V} -category \mathscr{C} consists of

- A (left) \mathscr{V} -category \mathscr{C} consists of
 - a (large) set $ob \mathscr{C}$,

<ロト <回ト < 回ト < 回ト < 回ト -

- A (left) \mathscr{V} -category \mathscr{C} consists of
 - a (large) set $ob \mathscr{C}$,
 - $\bullet \ \text{objects} \ \mathscr{C}(A,B) \ \text{of} \ \mathscr{V} \ (A,B \in \mathsf{ob} \ \mathscr{C}),$

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト ・

- A (left) \mathscr{V} -category \mathscr{C} consists of
 - a (large) set $ob \mathscr{C}$,
 - $\bullet \ \text{objects} \ \mathscr{C}(A,B) \ \text{of} \ \mathscr{V} \ (A,B \in \mathsf{ob} \ \mathscr{C}),$
 - morphisms $m_{ABC}: \mathscr{C}(B,C)\otimes \mathscr{C}(A,B) \to \mathscr{C}(A,C)$ in $\mathscr{V}(A,B,C\in \mathrm{ob}\,\mathscr{C})$, and

・ロト ・回ト ・ヨト・ヨト
- A (left) \mathscr{V} -category \mathscr{C} consists of
 - a (large) set $ob \mathscr{C}$,
 - $\bullet \ \text{objects} \ \mathscr{C}(A,B) \ \text{of} \ \mathscr{V} \ (A,B \in \mathsf{ob} \ \mathscr{C}),$
 - morphisms $m_{ABC}: \mathscr{C}(B,C)\otimes \mathscr{C}(A,B) \to \mathscr{C}(A,C)$ in $\mathscr{V}(A,B,C\in \mathrm{ob}\,\mathscr{C})$, and
 - morphisms $e_A: I \to \mathscr{C}(A, A)$ in $\mathscr{V} \ (A \in \mathsf{ob}\, \mathscr{C})$

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト ・

- A (left) \mathscr{V} -category \mathscr{C} consists of
 - a (large) set $ob \mathscr{C}$,
 - $\bullet \ \text{objects} \ \mathscr{C}(A,B) \ \text{of} \ \mathscr{V} \ (A,B \in \mathsf{ob} \ \mathscr{C}),$
 - morphisms $m_{ABC}: \mathscr{C}(B,C)\otimes \mathscr{C}(A,B) \to \mathscr{C}(A,C)$ in $\mathscr{V}(A,B,C\in \mathrm{ob}\,\mathscr{C})$, and
 - $\bullet \ \text{morphisms} \ e_A: I \to \mathscr{C}(A,A) \ \text{in} \ \mathscr{V} \ (A \in \mathsf{ob} \, \mathscr{C})$

such that diagrammatic associativity and identity laws hold.

- 4 同 1 - 4 回 1 - 4 回 1

- A (left) \mathscr{V} -category \mathscr{C} consists of
 - a (large) set $ob \mathscr{C}$,
 - $\bullet \ \text{objects} \ \mathscr{C}(A,B) \ \text{of} \ \mathscr{V} \ (A,B \in \mathsf{ob} \ \mathscr{C}),$
 - morphisms $m_{ABC}: \mathscr{C}(B,C)\otimes \mathscr{C}(A,B) \to \mathscr{C}(A,C)$ in $\mathscr{V}(A,B,C\in \mathrm{ob}\,\mathscr{C})$, and
 - $\bullet \ \text{morphisms} \ e_A: I \to \mathscr{C}(A,A) \ \text{in} \ \mathscr{V} \ (A \in \mathsf{ob} \, \mathscr{C})$

such that diagrammatic associativity and identity laws hold.

A right \mathscr{V} -category \mathscr{C} is a left $\mathscr{V}^{\mathsf{rev}}$ -category

A (left) \mathscr{V} -category \mathscr{C} consists of

- a (large) set $ob \mathscr{C}$,
- $\bullet \ \text{objects} \ \mathscr{C}(A,B) \ \text{of} \ \mathscr{V} \ (A,B \in \mathsf{ob} \ \mathscr{C}),$
- morphisms $m_{ABC}: \mathscr{C}(B,C)\otimes \mathscr{C}(A,B) \to \mathscr{C}(A,C)$ in $\mathscr{V}(A,B,C\in \mathrm{ob}\,\mathscr{C})$, and
- morphisms $e_A: I \to \mathscr{C}(A, A)$ in $\mathscr{V} \ (A \in \mathsf{ob}\, \mathscr{C})$

such that diagrammatic associativity and identity laws hold.

A right \mathscr{V} -category \mathscr{C} is a left $\mathscr{V}^{\mathsf{rev}}$ -category and so has composition morphisms of the form $m_{ABC}: \mathscr{C}(A, B) \otimes \mathscr{C}(B, C) \to \mathscr{C}(A, C) \text{ in } \mathscr{V}(A, B, C \in \mathsf{ob} \mathscr{C}).$

A (left) \mathscr{V} -category \mathscr{C} consists of

- a (large) set $ob \mathscr{C}$,
- $\bullet \ \text{objects} \ \mathscr{C}(A,B) \ \text{of} \ \mathscr{V} \ (A,B \in \mathsf{ob} \ \mathscr{C}),$
- morphisms $m_{ABC}: \mathscr{C}(B,C)\otimes \mathscr{C}(A,B) \to \mathscr{C}(A,C)$ in $\mathscr{V}(A,B,C\in \mathrm{ob}\,\mathscr{C})$, and
- morphisms $e_A: I \to \mathscr{C}(A, A)$ in $\mathscr{V} \ (A \in \mathsf{ob}\, \mathscr{C})$

such that diagrammatic associativity and identity laws hold.

A right \mathscr{V} -category \mathscr{C} is a left $\mathscr{V}^{\mathsf{rev}}$ -category and so has composition morphisms of the form $m_{ABC}: \mathscr{C}(A, B) \otimes \mathscr{C}(B, C) \to \mathscr{C}(A, C) \text{ in } \mathscr{V}(A, B, C \in \mathsf{ob} \mathscr{C}).$

Every left \mathscr{V} -category \mathscr{C}

A (left) \mathscr{V} -category \mathscr{C} consists of

- a (large) set $ob \mathscr{C}$,
- $\bullet \ \text{objects} \ \mathscr{C}(A,B) \ \text{of} \ \mathscr{V} \ (A,B \in \mathsf{ob} \ \mathscr{C}),$
- morphisms $m_{ABC}: \mathscr{C}(B,C)\otimes \mathscr{C}(A,B) \to \mathscr{C}(A,C)$ in $\mathscr{V}(A,B,C\in \mathrm{ob}\,\mathscr{C})$, and
- morphisms $e_A: I \to \mathscr{C}(A, A)$ in $\mathscr{V} \ (A \in \mathsf{ob}\, \mathscr{C})$

such that diagrammatic associativity and identity laws hold.

A right \mathscr{V} -category \mathscr{C} is a left $\mathscr{V}^{\mathsf{rev}}$ -category and so has composition morphisms of the form $m_{ABC}: \mathscr{C}(A, B) \otimes \mathscr{C}(B, C) \to \mathscr{C}(A, C) \text{ in } \mathscr{V}(A, B, C \in \mathsf{ob} \mathscr{C}).$

Every left \mathscr{V} -category \mathscr{C} determines a *right* \mathscr{V} -category \mathscr{C}°

A (left) \mathscr{V} -category \mathscr{C} consists of

- a (large) set $ob \mathscr{C}$,
- $\bullet \ \text{objects} \ \mathscr{C}(A,B) \ \text{of} \ \mathscr{V} \ (A,B \in \mathsf{ob} \ \mathscr{C}),$
- morphisms $m_{ABC}: \mathscr{C}(B,C)\otimes \mathscr{C}(A,B) \to \mathscr{C}(A,C)$ in $\mathscr{V}(A,B,C\in \mathrm{ob}\,\mathscr{C})$, and
- morphisms $e_A: I \to \mathscr{C}(A, A)$ in $\mathscr{V} \ (A \in \mathsf{ob}\, \mathscr{C})$

such that diagrammatic associativity and identity laws hold.

A right \mathscr{V} -category \mathscr{C} is a left $\mathscr{V}^{\mathsf{rev}}$ -category and so has composition morphisms of the form $m_{ABC}: \mathscr{C}(A, B) \otimes \mathscr{C}(B, C) \to \mathscr{C}(A, C) \text{ in } \mathscr{V}(A, B, C \in \mathsf{ob}\,\mathscr{C}).$

Every left \mathscr{V} -category \mathscr{C} determines a *right* \mathscr{V} -category \mathscr{C}° (the **formal opposite** of \mathscr{C})

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

A (left) \mathscr{V} -category \mathscr{C} consists of

- a (large) set $ob \mathscr{C}$,
- $\bullet \ \text{objects} \ \mathscr{C}(A,B) \ \text{of} \ \mathscr{V} \ (A,B \in \mathsf{ob} \ \mathscr{C}),$
- morphisms $m_{ABC}: \mathscr{C}(B,C)\otimes \mathscr{C}(A,B) \to \mathscr{C}(A,C)$ in $\mathscr{V}(A,B,C\in \mathrm{ob}\,\mathscr{C})$, and
- morphisms $e_A: I \to \mathscr{C}(A, A)$ in $\mathscr{V} \ (A \in \mathsf{ob}\, \mathscr{C})$

such that diagrammatic associativity and identity laws hold.

A right \mathscr{V} -category \mathscr{C} is a left $\mathscr{V}^{\mathsf{rev}}$ -category and so has composition morphisms of the form $m_{ABC}: \mathscr{C}(A, B) \otimes \mathscr{C}(B, C) \to \mathscr{C}(A, C) \text{ in } \mathscr{V}(A, B, C \in \mathsf{ob} \mathscr{C}).$

Every left \mathscr{V} -category \mathscr{C} determines a *right* \mathscr{V} -category \mathscr{C}° (the **formal opposite** of \mathscr{C}) with the same objects

イロト イポト イヨト イヨト 三日

A (left) \mathscr{V} -category \mathscr{C} consists of

- a (large) set $ob \mathscr{C}$,
- $\bullet \ \text{objects} \ \mathscr{C}(A,B) \ \text{of} \ \mathscr{V} \ (A,B \in \mathsf{ob} \ \mathscr{C}),$
- morphisms $m_{ABC}: \mathscr{C}(B,C)\otimes \mathscr{C}(A,B) \to \mathscr{C}(A,C)$ in $\mathscr{V}(A,B,C\in \mathrm{ob}\,\mathscr{C})$, and
- morphisms $e_A: I \to \mathscr{C}(A, A)$ in $\mathscr{V} \ (A \in \mathsf{ob}\, \mathscr{C})$

such that diagrammatic associativity and identity laws hold.

A right \mathscr{V} -category \mathscr{C} is a left $\mathscr{V}^{\mathsf{rev}}$ -category and so has composition morphisms of the form $m_{ABC}: \mathscr{C}(A, B) \otimes \mathscr{C}(B, C) \to \mathscr{C}(A, C) \text{ in } \mathscr{V}(A, B, C \in \mathsf{ob} \mathscr{C}).$

Every left \mathscr{V} -category \mathscr{C} determines a *right* \mathscr{V} -category \mathscr{C}° (the **formal opposite** of \mathscr{C}) with the same objects but with hom-objects $\mathscr{C}^{\circ}(A, B) := \mathscr{C}(B, A) \ (A, B \in \mathsf{ob} \, \mathscr{C}).$

A (left) \mathscr{V} -category \mathscr{C} consists of

- a (large) set $ob \mathscr{C}$,
- $\bullet \ \text{objects} \ \mathscr{C}(A,B) \ \text{of} \ \mathscr{V} \ (A,B \in \mathsf{ob} \ \mathscr{C}),$
- morphisms $m_{ABC}: \mathscr{C}(B,C)\otimes \mathscr{C}(A,B) \to \mathscr{C}(A,C)$ in $\mathscr{V}(A,B,C\in \mathrm{ob}\,\mathscr{C})$, and
- morphisms $e_A: I \to \mathscr{C}(A, A)$ in $\mathscr{V} \ (A \in \mathsf{ob}\, \mathscr{C})$

such that diagrammatic associativity and identity laws hold.

A right \mathscr{V} -category \mathscr{C} is a left $\mathscr{V}^{\mathsf{rev}}$ -category and so has composition morphisms of the form $m_{ABC}: \mathscr{C}(A, B) \otimes \mathscr{C}(B, C) \to \mathscr{C}(A, C) \text{ in } \mathscr{V}(A, B, C \in \mathsf{ob} \mathscr{C}).$

Every left \mathscr{V} -category \mathscr{C} determines a *right* \mathscr{V} -category \mathscr{C}° (the **formal opposite** of \mathscr{C}) with the same objects but with hom-objects $\mathscr{C}^{\circ}(A, B) := \mathscr{C}(B, A) \ (A, B \in \mathsf{ob} \, \mathscr{C}).$

A (left) \mathscr{V} -functor $F: \mathscr{C} \to \mathscr{D}$

<ロト <回ト < 回ト < 回ト < 回ト -

A (left) \mathscr{V} -functor $F : \mathscr{C} \to \mathscr{D}$ consists of a function ob $\mathscr{C} \to \operatorname{ob} \mathscr{D}$, $A \mapsto FA$,

(1) マン・ション・

A (left) \mathscr{V} -functor $F : \mathscr{C} \to \mathscr{D}$ consists of a function ob $\mathscr{C} \to \operatorname{ob} \mathscr{D}$, $A \mapsto FA$, together with morphisms $F_{AB} : \mathscr{C}(A, B) \to \mathscr{D}(FA, FB)$ in $\mathscr{V}(A, B \in \operatorname{ob} \mathscr{C})$

・ 同 ト ・ ヨ ト ・ ヨ ト

A (left) \mathscr{V} -functor $F : \mathscr{C} \to \mathscr{D}$ consists of a function ob $\mathscr{C} \to \text{ob } \mathscr{D}$, $A \mapsto FA$, together with morphisms $F_{AB} : \mathscr{C}(A, B) \to \mathscr{D}(FA, FB)$ in $\mathscr{V}(A, B \in \text{ob } \mathscr{C})$ satisfying diagrammatic axioms of preservation of composition and identities.

A (B) < (B) < (B) < (B) </p>

A (left) \mathscr{V} -functor $F : \mathscr{C} \to \mathscr{D}$ consists of a function ob $\mathscr{C} \to \text{ob } \mathscr{D}$, $A \mapsto FA$, together with morphisms $F_{AB} : \mathscr{C}(A, B) \to \mathscr{D}(FA, FB)$ in $\mathscr{V}(A, B \in \text{ob } \mathscr{C})$ satisfying diagrammatic axioms of preservation of composition and identities.

The 2-category of (left) \mathscr{V} -categories:

_ΨCAT

・ 同 ト ・ ヨ ト ・ ヨ ト

A (left) \mathscr{V} -functor $F : \mathscr{C} \to \mathscr{D}$ consists of a function ob $\mathscr{C} \to \text{ob } \mathscr{D}$, $A \mapsto FA$, together with morphisms $F_{AB} : \mathscr{C}(A, B) \to \mathscr{D}(FA, FB)$ in $\mathscr{V}(A, B \in \text{ob } \mathscr{C})$ satisfying diagrammatic axioms of preservation of composition and identities.

The 2-category of (left) \mathscr{V} -categories:

_ℋCAT

The 2-category of right \mathscr{V} -categories

 $\mathsf{CAT}_{\mathscr{V}}:={}_{\mathscr{V}^{\mathsf{rev}}}\mathsf{CAT}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Left \mathscr{V} -graded categories: An abstract definition

E

A (left) \mathscr{V} -graded category \mathscr{C} is a left $\widehat{\mathscr{V}}$ -category, where $\widehat{\mathscr{V}} := [\mathscr{V}^{op}, \mathsf{SET}]$ carries the Day convolution monoidal structure.

・ 同 ト ・ ヨ ト ・ ヨ ト

A (left) \mathscr{V} -graded category \mathscr{C} is a left $\hat{\mathscr{V}}$ -category, where $\hat{\mathscr{V}} := [\mathscr{V}^{op}, \mathsf{SET}]$ carries the Day convolution monoidal structure.

[Wood], [Kelly-Labella-Schmitt-Street], [Levy], [Garner], [McDermott-Uustalu], [L.-W.]

▲祠 ▶ ▲ 陸 ▶ ▲ 陸 ▶

Equivalently, a (left) \mathscr{V} -graded category \mathscr{C} consists of

<ロト <回ト < 回ト < 回ト -

Equivalently, a (left) \mathscr{V} -graded category \mathscr{C} consists of

• a (large) set $ob \mathscr{C}$,

<ロ> <同> <同> < 同> < 同>

Equivalently, a (left) $\mathscr V\text{-}\mathsf{graded}$ category $\mathscr C$ consists of

- a (large) set $ob \mathscr{C}$,
- for each pair $A,B\in {\rm ob}\, {\mathscr C}$

(4 同) 4 ヨ) 4 ヨ)

Equivalently, a (left) $\mathscr V\text{-}\mathsf{graded}$ category $\mathscr C$ consists of

- a (large) set $ob \mathscr{C}$,
- \bullet for each pair $A,B\in {\rm ob}\, {\mathscr C}$ and each $X\in {\rm ob}\, {\mathscr V}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Equivalently, a (left) $\mathscr V\text{-}\mathsf{graded}$ category $\mathscr C$ consists of

- a (large) set $ob \mathscr{C}$,
- \bullet for each pair $A,B\in {\rm ob}\,\mathscr C$ and each $X\in {\rm ob}\,\mathscr V$ a set $\mathscr C(X,A;B)$

(4 同) 4 ヨ) 4 ヨ)

Equivalently, a (left) $\mathscr V\text{-}\mathsf{graded}$ category $\mathscr C$ consists of

- a (large) set $ob \mathscr{C}$,
- for each pair $A, B \in \mathsf{ob}\,\mathscr{C}$ and each $X \in \mathsf{ob}\,\mathscr{V}$ a set $\mathscr{C}(X, A; B)$ whose elements we write as $f: X, A \to B$

(4 同) 4 ヨ) 4 ヨ)

Equivalently, a (left) $\mathscr V\text{-}\mathsf{graded}$ category $\mathscr C$ consists of

- a (large) set ob 𝒞,
- for each pair $A,B\in {\rm ob}\,\mathscr C$ and each $X\in {\rm ob}\,\mathscr V$ a set $\mathscr C(X,A;B)$ whose elements we write as $f:X,A\to B$ and call graded morphisms from A to B

イロト イボト イヨト イヨト

Equivalently, a (left) $\mathscr V\text{-}\mathsf{graded}$ category $\mathscr C$ consists of

- a (large) set ob 𝒞,
- for each pair $A, B \in \operatorname{ob} \mathscr{C}$ and each $X \in \operatorname{ob} \mathscr{V}$ a set $\mathscr{C}(X, A; B)$ whose elements we write as $f: X, A \to B$ and call graded morphisms from A to B with grade X,

< ロ > < 同 > < 回 > < 回 >

Equivalently, a (left) $\mathscr V\text{-}\mathsf{graded}$ category $\mathscr C$ consists of

- a (large) set ob 𝒞,
- for each pair $A, B \in \operatorname{ob} \mathscr{C}$ and each $X \in \operatorname{ob} \mathscr{V}$ a set $\mathscr{C}(X, A; B)$ whose elements we write as $f: X, A \to B$ and call graded morphisms from A to B with grade X,
- \bullet an assignment to each pair of graded morphisms $f:X,A \to B$

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト ・

Equivalently, a (left) $\mathscr V\text{-}\mathsf{graded}$ category $\mathscr C$ consists of

- a (large) set ob 𝒞,
- for each pair $A, B \in \operatorname{ob} \mathscr{C}$ and each $X \in \operatorname{ob} \mathscr{V}$ a set $\mathscr{C}(X, A; B)$ whose elements we write as $f: X, A \to B$ and call graded morphisms from A to B with grade X,
- an assignment to each pair of graded morphisms $f:X,A \to B$ and $g:Y,B \to C$

Equivalently, a (left) \mathscr{V} -graded category \mathscr{C} consists of

- a (large) set ob 𝒞,
- for each pair $A, B \in \operatorname{ob} \mathscr{C}$ and each $X \in \operatorname{ob} \mathscr{V}$ a set $\mathscr{C}(X, A; B)$ whose elements we write as $f: X, A \to B$ and call graded morphisms from A to B with grade X,
- an assignment to each pair of graded morphisms $f: X, A \rightarrow B$ and $g: Y, B \rightarrow C$ a graded morphism $g \circ f: Y \otimes X, A \rightarrow C$,

- a (large) set ob \mathscr{C} ,
- for each pair $A, B \in \operatorname{ob} \mathscr{C}$ and each $X \in \operatorname{ob} \mathscr{V}$ a set $\mathscr{C}(X, A; B)$ whose elements we write as $f: X, A \to B$ and call graded morphisms from A to B with grade X,
- an assignment to each pair of graded morphisms $f: X, A \rightarrow B$ and $g: Y, B \rightarrow C$ a graded morphism $g \circ f: Y \otimes X, A \rightarrow C$,
- graded morphisms $i_A: I, A \to A \ (A \in ob \ \mathscr{C})$,

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

- a (large) set ob \mathscr{C} ,
- for each pair $A, B \in \operatorname{ob} \mathscr{C}$ and each $X \in \operatorname{ob} \mathscr{V}$ a set $\mathscr{C}(X, A; B)$ whose elements we write as $f: X, A \to B$ and call graded morphisms from A to B with grade X,
- an assignment to each pair of graded morphisms $f: X, A \rightarrow B$ and $g: Y, B \rightarrow C$ a graded morphism $g \circ f: Y \otimes X, A \rightarrow C$,
- graded morphisms $i_A: I, A \to A \ (A \in ob \ \mathscr{C})$,
- \bullet an assignment to each graded morphism $f:X,A \to B$

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

- a (large) set ob \mathscr{C} ,
- for each pair $A, B \in \operatorname{ob} \mathscr{C}$ and each $X \in \operatorname{ob} \mathscr{V}$ a set $\mathscr{C}(X, A; B)$ whose elements we write as $f: X, A \to B$ and call graded morphisms from A to B with grade X,
- an assignment to each pair of graded morphisms $f: X, A \rightarrow B$ and $g: Y, B \rightarrow C$ a graded morphism $g \circ f: Y \otimes X, A \rightarrow C$,
- graded morphisms $i_A: I, A \to A \ (A \in ob \ \mathscr{C})$,
- \bullet an assignment to each graded morphism $f:X,A\to B$ and each morphism $\alpha:Y\to X$ in $\mathscr V$

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト

Equivalently, a (left) $\mathscr V\text{-}\mathsf{graded}$ category $\mathscr C$ consists of

- a (large) set $ob \mathscr{C}$,
- for each pair $A, B \in \operatorname{ob} \mathscr{C}$ and each $X \in \operatorname{ob} \mathscr{V}$ a set $\mathscr{C}(X, A; B)$ whose elements we write as $f: X, A \to B$ and call graded morphisms from A to B with grade X,
- an assignment to each pair of graded morphisms $f: X, A \rightarrow B$ and $g: Y, B \rightarrow C$ a graded morphism $g \circ f: Y \otimes X, A \rightarrow C$,
- graded morphisms $i_A: I, A \to A \ (A \in ob \ \mathscr{C})$,
- an assignment to each graded morphism $f: X, A \to B$ and each morphism $\alpha: Y \to X$ in \mathscr{V} a graded morphism $\alpha^*(f): Y, A \to B$

- a (large) set ob \mathscr{C} ,
- for each pair $A, B \in \operatorname{ob} \mathscr{C}$ and each $X \in \operatorname{ob} \mathscr{V}$ a set $\mathscr{C}(X, A; B)$ whose elements we write as $f: X, A \to B$ and call graded morphisms from A to B with grade X,
- an assignment to each pair of graded morphisms $f: X, A \rightarrow B$ and $g: Y, B \rightarrow C$ a graded morphism $g \circ f: Y \otimes X, A \rightarrow C$,
- graded morphisms $i_A: I, A \to A \ (A \in ob \ {\mathcal C})$,
- an assignment to each graded morphism $f: X, A \to B$ and each morphism $\alpha: Y \to X$ in \mathscr{V} a graded morphism $\alpha^*(f): Y, A \to B$ that we call the **reindexing of** f along α ,
Equivalently, a (left) \mathscr{V} -graded category \mathscr{C} consists of

- a (large) set ob \mathscr{C} ,
- for each pair $A, B \in \operatorname{ob} \mathscr{C}$ and each $X \in \operatorname{ob} \mathscr{V}$ a set $\mathscr{C}(X, A; B)$ whose elements we write as $f: X, A \to B$ and call graded morphisms from A to B with grade X,
- an assignment to each pair of graded morphisms $f: X, A \rightarrow B$ and $g: Y, B \rightarrow C$ a graded morphism $g \circ f: Y \otimes X, A \rightarrow C$,
- graded morphisms $i_A: I, A \to A \ (A \in ob \ {\mathcal C})$,
- an assignment to each graded morphism $f: X, A \to B$ and each morphism $\alpha: Y \to X$ in \mathscr{V} a graded morphism $\alpha^*(f): Y, A \to B$ that we call the **reindexing of** f along α ,

satisfying the following axioms:

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

satisfying the following axioms:

(1) Functoriality of reindexing. $1_X^*(f) = f : X, A \to B$

<ロト <回ト < 回ト < 回ト < 回ト -

satisfying the following axioms:

(1) Functoriality of reindexing. $1_X^*(f) = f : X, A \to B$ and $(\beta \cdot \alpha)^*(f) = \alpha^*(\beta^*(f)) : Z, A \to B$

イロト イヨト イヨト

satisfying the following axioms:

(1) Functoriality of reindexing. $1_X^*(f) = f : X, A \to B$ and $(\beta \cdot \alpha)^*(f) = \alpha^*(\beta^*(f)) : Z, A \to B$ for all $f : X, A \to B$ in \mathscr{C} and $\alpha : Z \to Y, \beta : Y \to X$ in \mathscr{V} ;

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト ・

satisfying the following axioms:

(I) Functoriality of reindexing. $1_X^*(f) = f : X, A \to B$ and $(\beta \cdot \alpha)^*(f) = \alpha^*(\beta^*(f)) : Z, A \to B$ for all $f : X, A \to B$ in \mathscr{C} and $\alpha : Z \to Y, \beta : Y \to X$ in \mathscr{V} ;

(II) Naturality of composition. $\beta^*(g) \circ \alpha^*(f) = (\beta \otimes \alpha)^*(g \circ f) : Y' \otimes X', A \to C$

(ロ) (同) (三) (三)

satisfying the following axioms:

(I) Functoriality of reindexing. $1_X^*(f) = f : X, A \to B$ and $(\beta \cdot \alpha)^*(f) = \alpha^*(\beta^*(f)) : Z, A \to B$ for all $f : X, A \to B$ in \mathscr{C} and $\alpha : Z \to Y, \beta : Y \to X$ in \mathscr{V} ;

(II) Naturality of composition. $\beta^*(g) \circ \alpha^*(f) = (\beta \otimes \alpha)^*(g \circ f) : Y' \otimes X', A \to C$ for all $f : X, A \to B, g : Y, B \to C$ in \mathscr{C}

satisfying the following axioms:

(I) Functoriality of reindexing. $1_X^*(f) = f : X, A \to B$ and $(\beta \cdot \alpha)^*(f) = \alpha^*(\beta^*(f)) : Z, A \to B$ for all $f : X, A \to B$ in \mathscr{C} and $\alpha : Z \to Y, \beta : Y \to X$ in \mathscr{V} ;

(II) Naturality of composition.

 $\begin{array}{l} \beta^*(g)\circ\alpha^*(f)=(\beta\otimes\alpha)^*(g\circ f):Y'\otimes X',A\to C \text{ for all }\\ f:X,A\to B,\ g:Y,B\to C \text{ in }\mathscr{C} \text{ and }\alpha:X'\to X \text{ and }\\ \beta:Y'\to Y \text{ in }\mathscr{V}; \end{array}$

satisfying the following axioms:

(I) Functoriality of reindexing. $1_X^*(f) = f : X, A \to B$ and $(\beta \cdot \alpha)^*(f) = \alpha^*(\beta^*(f)) : Z, A \to B$ for all $f : X, A \to B$ in \mathscr{C} and $\alpha : Z \to Y, \beta : Y \to X$ in \mathscr{V} ;

(II) Naturality of composition.

 $\begin{array}{l} \beta^*(g)\circ\alpha^*(f)=(\beta\otimes\alpha)^*(g\circ f):Y'\otimes X',A\to C \text{ for all }\\ f:X,A\to B,\ g:Y,B\to C \text{ in } \mathscr C \text{ and } \alpha:X'\to X \text{ and }\\ \beta:Y'\to Y \text{ in } \mathscr V; \end{array}$

(III) Essential associativity. For all $f: X, A \to B, g: Y, B \to C$, $h: Z, C \to D$ in \mathscr{C} ,

・ロト ・回ト ・ヨト ・ヨト

satisfying the following axioms:

(1) Functoriality of reindexing. $1_X^*(f) = f : X, A \to B$ and $(\beta \cdot \alpha)^*(f) = \alpha^*(\beta^*(f)) : Z, A \to B$ for all $f : X, A \to B$ in \mathscr{C} and $\alpha : Z \to Y, \beta : Y \to X$ in \mathscr{V} ;

(II) Naturality of composition.

 $\begin{array}{l} \beta^*(g)\circ\alpha^*(f)=(\beta\otimes\alpha)^*(g\circ f):Y'\otimes X',A\to C \text{ for all }\\ f:X,A\to B,\ g:Y,B\to C \text{ in } \mathscr C \text{ and } \alpha:X'\to X \text{ and }\\ \beta:Y'\to Y \text{ in } \mathscr V; \end{array}$

(III) Essential associativity. For all $f: X, A \to B, g: Y, B \to C$, $h: Z, C \to D$ in \mathscr{C} , $(h \circ g) \circ f: (Z \otimes Y) \otimes X, A \to D$

・ロト ・ 雪 ト ・ ヨ ト ・

satisfying the following axioms:

(I) Functoriality of reindexing. $1_X^*(f) = f : X, A \to B$ and $(\beta \cdot \alpha)^*(f) = \alpha^*(\beta^*(f)) : Z, A \to B$ for all $f : X, A \to B$ in \mathscr{C} and $\alpha : Z \to Y, \beta : Y \to X$ in \mathscr{V} ;

(II) Naturality of composition.

 $\begin{array}{l} \beta^*(g)\circ\alpha^*(f)=(\beta\otimes\alpha)^*(g\circ f):Y'\otimes X',A\to C \text{ for all }\\ f:X,A\to B,\ g:Y,B\to C \text{ in }\mathscr{C} \text{ and }\alpha:X'\to X \text{ and }\\ \beta:Y'\to Y \text{ in }\mathscr{V}; \end{array}$

(III) Essential associativity. For all $f: X, A \to B, g: Y, B \to C$, $h: Z, C \to D$ in \mathscr{C} , $(h \circ g) \circ f: (Z \otimes Y) \otimes X, A \to D$ is the reindexing of $h \circ (g \circ f): Z \otimes (Y \otimes X), A \to D$

・ロト ・ 雪 ト ・ ヨ ト ・ コ ト

satisfying the following axioms:

(I) Functoriality of reindexing. $1_X^*(f) = f : X, A \to B$ and $(\beta \cdot \alpha)^*(f) = \alpha^*(\beta^*(f)) : Z, A \to B$ for all $f : X, A \to B$ in \mathscr{C} and $\alpha : Z \to Y, \beta : Y \to X$ in \mathscr{V} ;

(II) Naturality of composition.

 $\begin{array}{l} \beta^*(g)\circ\alpha^*(f)=(\beta\otimes\alpha)^*(g\circ f):Y'\otimes X',A\to C \text{ for all }\\ f:X,A\to B,\ g:Y,B\to C \text{ in }\mathscr{C} \text{ and }\alpha:X'\to X \text{ and }\\ \beta:Y'\to Y \text{ in }\mathscr{V}; \end{array}$

(III) Essential associativity. For all $f: X, A \to B, g: Y, B \to C$, $h: Z, C \to D$ in \mathscr{C} , $(h \circ g) \circ f: (Z \otimes Y) \otimes X, A \to D$ is the reindexing of $h \circ (g \circ f): Z \otimes (Y \otimes X), A \to D$ along $a_{ZYX}: (Z \otimes Y) \otimes X \xrightarrow{\sim} Z \otimes (Y \otimes X);$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

satisfying the following axioms:

(I) Functoriality of reindexing. $1_X^*(f) = f : X, A \to B$ and $(\beta \cdot \alpha)^*(f) = \alpha^*(\beta^*(f)) : Z, A \to B$ for all $f : X, A \to B$ in \mathscr{C} and $\alpha : Z \to Y, \beta : Y \to X$ in \mathscr{V} ;

(II) Naturality of composition.

 $\begin{array}{l} \beta^*(g)\circ\alpha^*(f)=(\beta\otimes\alpha)^*(g\circ f):Y'\otimes X',A\to C \text{ for all }\\ f:X,A\to B,\ g:Y,B\to C \text{ in } \mathscr C \text{ and } \alpha:X'\to X \text{ and }\\ \beta:Y'\to Y \text{ in } \mathscr V; \end{array}$

(III) Essential associativity. For all $f: X, A \to B, g: Y, B \to C$, $h: Z, C \to D$ in \mathscr{C} , $(h \circ g) \circ f: (Z \otimes Y) \otimes X, A \to D$ is the reindexing of $h \circ (g \circ f): Z \otimes (Y \otimes X), A \to D$ along $a_{ZYX}: (Z \otimes Y) \otimes X \xrightarrow{\sim} Z \otimes (Y \otimes X);$

(IV) Essential identity. For every $f: X, A \to B$ in \mathscr{C} ,

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

satisfying the following axioms:

(I) Functoriality of reindexing. $1_X^*(f) = f : X, A \to B$ and $(\beta \cdot \alpha)^*(f) = \alpha^*(\beta^*(f)) : Z, A \to B$ for all $f : X, A \to B$ in \mathscr{C} and $\alpha : Z \to Y, \beta : Y \to X$ in \mathscr{V} ;

(II) Naturality of composition.

 $\begin{array}{l} \beta^*(g)\circ\alpha^*(f)=(\beta\otimes\alpha)^*(g\circ f):Y'\otimes X',A\to C \text{ for all }\\ f:X,A\to B,\ g:Y,B\to C \text{ in } \mathscr C \text{ and } \alpha:X'\to X \text{ and }\\ \beta:Y'\to Y \text{ in } \mathscr V; \end{array}$

(III) Essential associativity. For all $f: X, A \to B, g: Y, B \to C$, $h: Z, C \to D$ in \mathscr{C} , $(h \circ g) \circ f: (Z \otimes Y) \otimes X, A \to D$ is the reindexing of $h \circ (g \circ f): Z \otimes (Y \otimes X), A \to D$ along $a_{ZYX}: (Z \otimes Y) \otimes X \xrightarrow{\sim} Z \otimes (Y \otimes X);$

(IV) Essential identity. For every $f: X, A \to B$ in \mathscr{C} , $f \circ i_A: X \otimes I, A \to B$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

satisfying the following axioms:

(I) Functoriality of reindexing. $1_X^*(f) = f : X, A \to B$ and $(\beta \cdot \alpha)^*(f) = \alpha^*(\beta^*(f)) : Z, A \to B$ for all $f : X, A \to B$ in \mathscr{C} and $\alpha : Z \to Y, \beta : Y \to X$ in \mathscr{V} ;

(II) Naturality of composition.

 $\begin{array}{l} \beta^*(g)\circ\alpha^*(f)=(\beta\otimes\alpha)^*(g\circ f):Y'\otimes X',A\to C \text{ for all }\\ f:X,A\to B,\ g:Y,B\to C \text{ in } \mathscr C \text{ and } \alpha:X'\to X \text{ and }\\ \beta:Y'\to Y \text{ in } \mathscr V; \end{array}$

(III) Essential associativity. For all $f: X, A \to B, g: Y, B \to C$, $h: Z, C \to D$ in \mathscr{C} , $(h \circ g) \circ f: (Z \otimes Y) \otimes X, A \to D$ is the reindexing of $h \circ (g \circ f): Z \otimes (Y \otimes X), A \to D$ along $a_{ZYX}: (Z \otimes Y) \otimes X \xrightarrow{\sim} Z \otimes (Y \otimes X);$

(IV) Essential identity. For every $f: X, A \to B$ in \mathscr{C} , $f \circ i_A: X \otimes I, A \to B$ is the reindexing of f along $r_X: X \otimes I \xrightarrow{\sim} X$,

イロト イポト イヨト イヨト 三日

satisfying the following axioms:

(I) Functoriality of reindexing. $1_X^*(f) = f : X, A \to B$ and $(\beta \cdot \alpha)^*(f) = \alpha^*(\beta^*(f)) : Z, A \to B$ for all $f : X, A \to B$ in \mathscr{C} and $\alpha : Z \to Y, \beta : Y \to X$ in \mathscr{V} ;

(II) Naturality of composition.

 $\hat{\beta}^*(g) \circ \alpha^*(f) = (\beta \otimes \alpha)^*(g \circ f) : Y' \otimes X', A \to C$ for all $f : X, A \to B, g : Y, B \to C$ in \mathscr{C} and $\alpha : X' \to X$ and $\beta : Y' \to Y$ in \mathscr{V} ;

(III) Essential associativity. For all $f: X, A \to B, g: Y, B \to C$, $h: Z, C \to D$ in \mathscr{C} , $(h \circ g) \circ f: (Z \otimes Y) \otimes X, A \to D$ is the reindexing of $h \circ (g \circ f): Z \otimes (Y \otimes X), A \to D$ along $a_{ZYX}: (Z \otimes Y) \otimes X \xrightarrow{\sim} Z \otimes (Y \otimes X);$

(IV) Essential identity. For every $f: X, A \to B$ in \mathscr{C} , $f \circ i_A : X \otimes I, A \to B$ is the reindexing of f along $r_X : X \otimes I \xrightarrow{\sim} X$, and $i_B \circ f : I \otimes X, A \to B$

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

satisfying the following axioms:

(I) Functoriality of reindexing. $1_X^*(f) = f : X, A \to B$ and $(\beta \cdot \alpha)^*(f) = \alpha^*(\beta^*(f)) : Z, A \to B$ for all $f : X, A \to B$ in \mathscr{C} and $\alpha : Z \to Y, \beta : Y \to X$ in \mathscr{V} ;

(II) Naturality of composition.

 $\hat{\beta}^*(g) \circ \alpha^*(f) = (\beta \otimes \alpha)^*(g \circ f) : Y' \otimes X', A \to C$ for all $f : X, A \to B, g : Y, B \to C$ in \mathscr{C} and $\alpha : X' \to X$ and $\beta : Y' \to Y$ in \mathscr{V} ;

(III) Essential associativity. For all $f: X, A \to B, g: Y, B \to C$, $h: Z, C \to D$ in \mathscr{C} , $(h \circ g) \circ f: (Z \otimes Y) \otimes X, A \to D$ is the reindexing of $h \circ (g \circ f): Z \otimes (Y \otimes X), A \to D$ along $a_{ZYX}: (Z \otimes Y) \otimes X \xrightarrow{\sim} Z \otimes (Y \otimes X);$

(IV) Essential identity. For every $f: X, A \to B$ in \mathscr{C} , $f \circ i_A : X \otimes I, A \to B$ is the reindexing of f along $r_X : X \otimes I \xrightarrow{\sim} X$, and $i_B \circ f : I \otimes X, A \to B$ is the reindexing of falong $\ell_X : I \otimes X \xrightarrow{\sim} X$.

Left \mathscr{V} -graded functors

E

・ロト ・回ト ・ヨト ・ヨト

A (left) \mathscr{V} -graded functor $F:\mathscr{C}\to\mathscr{D}$ consists of

<ロト <回ト < 回ト < 回ト -

A (left) \mathscr{V} -graded functor $F : \mathscr{C} \to \mathscr{D}$ consists of an assignment to each object A of \mathscr{C} an object FA of \mathscr{D}

・ 同 ト ・ ヨ ト ・ ヨ ト

A (left) \mathscr{V} -graded functor $F: \mathscr{C} \to \mathscr{D}$ consists of an assignment to each object A of \mathscr{C} an object FA of \mathscr{D} and an assignment to each graded morphism $f: X, A \to B$ in \mathscr{C}

A (left) \mathscr{V} -graded functor $F : \mathscr{C} \to \mathscr{D}$ consists of an assignment to each object A of \mathscr{C} an object FA of \mathscr{D} and an assignment to each graded morphism $f : X, A \to B$ in \mathscr{C} a graded morphism $Ff : X, FA \to FB$ in \mathscr{D} ,

・ 同 ト ・ ヨ ト ・ ヨ ト

A (left) \mathscr{V} -graded functor $F : \mathscr{C} \to \mathscr{D}$ consists of an assignment to each object A of \mathscr{C} an object FA of \mathscr{D} and an assignment to each graded morphism $f : X, A \to B$ in \mathscr{C} a graded morphism $Ff : X, FA \to FB$ in \mathscr{D} , such that these assignments preserve composition, identities, and reindexing. A (left) \mathscr{V} -graded functor $F: \mathscr{C} \to \mathscr{D}$ consists of an assignment to each object A of \mathscr{C} an object FA of \mathscr{D} and an assignment to each graded morphism $f: X, A \to B$ in \mathscr{C} a graded morphism $Ff: X, FA \to FB$ in \mathscr{D} , such that these assignments preserve composition, identities, and reindexing.

The 2-category of (left) \mathscr{V} -graded categories:

$$_{\mathscr{V}}\mathsf{GCAT} := {}_{\mathscr{\hat{V}}}\mathsf{CAT}$$

Every \mathscr{V} -graded category \mathscr{C} has an *underlying ordinary category* \mathscr{C}_0 with the same objects,

- 4 同 ト 4 ヨ ト

Every \mathscr{V} -graded category \mathscr{C} has an *underlying ordinary category* \mathscr{C}_0 with the same objects, in which a morphism $f: A \to B$ is a graded morphism $f: I, A \to B$ whose grade is I.

・ロト ・ 同ト ・ ヨト・

E

<ロト < 回ト < 回ト < 回ト < 回ト

Every left \mathscr{V} -actegory \mathscr{C}

э

・ロト ・回ト ・ヨト ・ヨト

Every left $\mathscr V\text{-}actegory \ \mathscr C$ can be regarded as a left $\mathscr V\text{-}graded$ category with the same objects,

・ロト ・ 一下・ ・ ヨト・

Every left \mathscr{V} -actegory \mathscr{C} can be regarded as a left \mathscr{V} -graded category with the same objects, in which a graded morphism $f: X, A \to B$ is a morphism $f: X.A \to B$ in \mathscr{C} .

・ロト ・ 一 マ ・ コ ト

Every left \mathscr{V} -actegory \mathscr{C} can be regarded as a left \mathscr{V} -graded category with the same objects, in which a graded morphism $f: X, A \to B$ is a morphism $f: X.A \to B$ in \mathscr{C} .

Thus we obtain a fully faithful 2-functor

・ロト ・ 一 マ ト ・ 日 ト

Every left \mathscr{V} -actegory \mathscr{C} can be regarded as a left \mathscr{V} -graded category with the same objects, in which a graded morphism $f: X, A \to B$ is a morphism $f: X.A \to B$ in \mathscr{C} .

Thus we obtain a fully faithful 2-functor

 ${}_{\mathscr{V}}\mathsf{ACT} \hookrightarrow {}_{\mathscr{V}}\mathsf{GCAT}$.

・ロト ・ 一 ・ ・ ヨ ・ ・ 日 ・

Every left \mathscr{V} -actegory \mathscr{C} can be regarded as a left \mathscr{V} -graded category with the same objects, in which a graded morphism $f: X, A \to B$ is a morphism $f: X.A \to B$ in \mathscr{C} .

Thus we obtain a fully faithful 2-functor

$$_{\mathscr{V}}\mathsf{ACT} \hookrightarrow {}_{\mathscr{V}}\mathsf{GCAT}$$
 .

More generally, every full subcategory of a left \mathscr{V} -actegory

・ロト ・ 一 マ ・ コ ト

Every left \mathscr{V} -actegory \mathscr{C} can be regarded as a left \mathscr{V} -graded category with the same objects, in which a graded morphism $f: X, A \to B$ is a morphism $f: X.A \to B$ in \mathscr{C} .

Thus we obtain a fully faithful 2-functor

 ${}_{\mathscr{V}}\mathsf{ACT} \hookrightarrow {}_{\mathscr{V}}\mathsf{GCAT} \ .$

More generally, every full subcategory of a left \mathscr{V} -actegory underlies a left \mathscr{V} -graded category.

Every left \mathscr{V} -actegory \mathscr{C} can be regarded as a left \mathscr{V} -graded category with the same objects, in which a graded morphism $f: X, A \to B$ is a morphism $f: X.A \to B$ in \mathscr{C} .

Thus we obtain a fully faithful 2-functor

 ${}_{\mathscr{V}}\mathsf{ACT} \hookrightarrow {}_{\mathscr{V}}\mathsf{GCAT} \ .$

More generally, every full subcategory of a left \mathscr{V} -actegory underlies a left \mathscr{V} -graded category.

Example. \mathscr{V} itself is a left \mathscr{V} -graded category

Every left \mathscr{V} -actegory \mathscr{C} can be regarded as a left \mathscr{V} -graded category with the same objects, in which a graded morphism $f: X, A \to B$ is a morphism $f: X.A \to B$ in \mathscr{C} .

Thus we obtain a fully faithful 2-functor

 ${}_{\mathscr{V}}\mathsf{ACT} \hookrightarrow {}_{\mathscr{V}}\mathsf{GCAT} \ .$

More generally, every full subcategory of a left \mathscr{V} -actegory underlies a left \mathscr{V} -graded category.

Example. \mathscr{V} itself is a left \mathscr{V} -graded category in which a graded morphism $f: X, A \to B$

・ロト ・ 雪 ト ・ ヨ ト ・ コ ト
Every left \mathscr{V} -actegory \mathscr{C} can be regarded as a left \mathscr{V} -graded category with the same objects, in which a graded morphism $f: X, A \to B$ is a morphism $f: X.A \to B$ in \mathscr{C} .

Thus we obtain a fully faithful 2-functor

 ${}_{\mathscr{V}}\mathsf{ACT} \hookrightarrow {}_{\mathscr{V}}\mathsf{GCAT} \ .$

More generally, every full subcategory of a left \mathscr{V} -actegory underlies a left \mathscr{V} -graded category.

Example. \mathscr{V} itself is a left \mathscr{V} -graded category in which a graded morphism $f: X, A \to B$ is a morphism $f: X \otimes A \to B$ in \mathscr{V} $(X, A, B \in \text{ob } \mathscr{V})$.

・ロト ・ 雪 ト ・ ヨ ト ・

Every left \mathscr{V} -actegory \mathscr{C} can be regarded as a left \mathscr{V} -graded category with the same objects, in which a graded morphism $f: X, A \to B$ is a morphism $f: X.A \to B$ in \mathscr{C} .

Thus we obtain a fully faithful 2-functor

 ${}_{\mathscr{V}}\mathsf{ACT} \hookrightarrow {}_{\mathscr{V}}\mathsf{GCAT} \ .$

More generally, every full subcategory of a left \mathscr{V} -actegory underlies a left \mathscr{V} -graded category.

Example. \mathscr{V} itself is a left \mathscr{V} -graded category in which a graded morphism $f: X, A \to B$ is a morphism $f: X \otimes A \to B$ in \mathscr{V} $(X, A, B \in \text{ob } \mathscr{V})$. Moreover, every full subcategory of \mathscr{V} underlies a \mathscr{V} -graded category.

・ロト ・回ト ・ヨト ・ヨト

E

Every (left) \mathscr{V} -category \mathscr{C}

・ロト ・四ト ・ヨト ・ヨト

Every (left) $\mathscr V\text{-}category \ \mathscr C$ can be regarded as a left $\mathscr V\text{-}graded$ category with the same objects,

・ロト ・四ト ・ヨト ・ヨト

Every (left) $\mathscr V\text{-}category\ \mathscr C$ can be regarded as a left $\mathscr V\text{-}graded$ category with the same objects, in which a graded morphism $f:X,A\to B$

<ロト <回ト < 回ト < 回ト -

Every (left) \mathscr{V} -category \mathscr{C} can be regarded as a left \mathscr{V} -graded category with the same objects, in which a graded morphism $f: X, A \to B$ is a morphism $f: X \to \mathscr{C}(A, B)$ in \mathscr{V} .

イロト イボト イヨト イヨト

Every (left) \mathscr{V} -category \mathscr{C} can be regarded as a left \mathscr{V} -graded category with the same objects, in which a graded morphism $f: X, A \to B$ is a morphism $f: X \to \mathscr{C}(A, B)$ in \mathscr{V} .

Thus we obtain a fully faithful 2-functor

・ロト ・ 一 マ ・ コ ト ・ 日 ト

Every (left) \mathscr{V} -category \mathscr{C} can be regarded as a left \mathscr{V} -graded category with the same objects, in which a graded morphism $f: X, A \to B$ is a morphism $f: X \to \mathscr{C}(A, B)$ in \mathscr{V} .

Thus we obtain a fully faithful 2-functor

 ${}_{\mathscr{V}}\mathsf{CAT} \hookrightarrow {}_{\mathscr{V}}\mathsf{GCAT}$.

・ロト ・ 同ト ・ ヨト ・ ヨト

Let \mathscr{C} be a left \mathscr{V} -graded category.

ŀ

→ □ ▶ → 臣 ▶ → 臣 ▶

Let ${\mathscr C}$ be a left ${\mathscr V}$ -graded category. Then there is a left ${\mathscr V}$ -actegory ${\mathscr V},{\mathscr C}$

▲ 伊 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Let \mathscr{C} be a left \mathscr{V} -graded category. Then there is a left \mathscr{V} -actegory \mathscr{V},\mathscr{C} equipped with a fully faithful left \mathscr{V} -graded functor $\mathscr{C} \hookrightarrow \mathscr{V},\mathscr{C}$.

Let \mathscr{C} be a left \mathscr{V} -graded category. Then there is a left \mathscr{V} -actegory \mathscr{V},\mathscr{C} equipped with a fully faithful left \mathscr{V} -graded functor $\mathscr{C} \hookrightarrow \mathscr{V},\mathscr{C}$.

The canonical 2-functor $_{\mathscr{V}}\mathsf{ACT}^{\mathrm{strong}} \to {}_{\mathscr{V}}\mathsf{GCAT}$

Let \mathscr{C} be a left \mathscr{V} -graded category. Then there is a left \mathscr{V} -actegory \mathscr{V},\mathscr{C} equipped with a fully faithful left \mathscr{V} -graded functor $\mathscr{C} \hookrightarrow \mathscr{V},\mathscr{C}$.

The canonical 2-functor ${}_{\mathscr{V}}\mathsf{ACT}^{\mathrm{strong}}\to {}_{\mathscr{V}}\mathsf{GCAT}$ has a left biadjoint

Let \mathscr{C} be a left \mathscr{V} -graded category. Then there is a left \mathscr{V} -actegory \mathscr{V},\mathscr{C} equipped with a fully faithful left \mathscr{V} -graded functor $\mathscr{C} \hookrightarrow \mathscr{V},\mathscr{C}$.

The canonical 2-functor ${}_{\mathscr{V}}\mathsf{ACT}^{\mathrm{strong}} \to {}_{\mathscr{V}}\mathsf{GCAT}$ has a left biadjoint whose unit consists of the above embeddings $\mathscr{C} \hookrightarrow \mathscr{V}_{\iota}\mathscr{C}$.

Let \mathscr{C} be a left \mathscr{V} -graded category. Then there is a left \mathscr{V} -actegory \mathscr{V},\mathscr{C} equipped with a fully faithful left \mathscr{V} -graded functor $\mathscr{C} \hookrightarrow \mathscr{V},\mathscr{C}$.

The canonical 2-functor ${}_{\mathscr{V}}\mathsf{ACT}^{\mathrm{strong}} \to {}_{\mathscr{V}}\mathsf{GCAT}$ has a left biadjoint whose unit consists of the above embeddings $\mathscr{C} \hookrightarrow \mathscr{V}_{\ell}\mathscr{C}$.

We call $\mathscr{V}_{\mathcal{C}}$ the **enveloping actegory** of \mathscr{C} ,

Let \mathscr{C} be a left \mathscr{V} -graded category. Then there is a left \mathscr{V} -actegory \mathscr{V},\mathscr{C} equipped with a fully faithful left \mathscr{V} -graded functor $\mathscr{C} \hookrightarrow \mathscr{V},\mathscr{C}$.

The canonical 2-functor ${}_{\mathscr{V}}\mathsf{ACT}^{\mathrm{strong}} \to {}_{\mathscr{V}}\mathsf{GCAT}$ has a left biadjoint whose unit consists of the above embeddings $\mathscr{C} \hookrightarrow \mathscr{V}_{\ell}\mathscr{C}$.

We call $\mathscr{V}_{\mathcal{C}}$ the **enveloping actegory** of \mathscr{C} , and we identify \mathscr{C} with a full \mathscr{V} -graded subcategory of $\mathscr{V}_{\mathcal{C}}$

Let \mathscr{C} be a left \mathscr{V} -graded category. Then there is a left \mathscr{V} -actegory \mathscr{V},\mathscr{C} equipped with a fully faithful left \mathscr{V} -graded functor $\mathscr{C} \hookrightarrow \mathscr{V},\mathscr{C}$.

The canonical 2-functor ${}_{\mathscr{V}}\mathsf{ACT}^{\mathrm{strong}} \to {}_{\mathscr{V}}\mathsf{GCAT}$ has a left biadjoint whose unit consists of the above embeddings $\mathscr{C} \hookrightarrow \mathscr{V}_{\ell}\mathscr{C}$.

We call $\mathscr{V}_{\mathscr{C}}\mathscr{C}$ the **enveloping actegory** of \mathscr{C} , and we identify \mathscr{C} with a full \mathscr{V} -graded subcategory of $\mathscr{V}_{\mathscr{C}}\mathscr{C}$ under the embedding $\mathscr{C} \hookrightarrow \mathscr{V}_{\mathscr{C}}\mathscr{C}$.

Let \mathscr{C} be a left \mathscr{V} -graded category. Then there is a left \mathscr{V} -actegory \mathscr{V},\mathscr{C} equipped with a fully faithful left \mathscr{V} -graded functor $\mathscr{C} \hookrightarrow \mathscr{V},\mathscr{C}$.

The canonical 2-functor ${}_{\mathscr{V}}\mathsf{ACT}^{\mathrm{strong}} \to {}_{\mathscr{V}}\mathsf{GCAT}$ has a left biadjoint whose unit consists of the above embeddings $\mathscr{C} \hookrightarrow \mathscr{V}_{\ell}\mathscr{C}$.

We call $\mathscr{V}_{\mathscr{C}}\mathscr{C}$ the **enveloping actegory** of \mathscr{C} , and we identify \mathscr{C} with a full \mathscr{V} -graded subcategory of $\mathscr{V}_{\mathscr{C}}\mathscr{C}$ under the embedding $\mathscr{C} \hookrightarrow \mathscr{V}_{\mathscr{C}}\mathscr{C}$. We write the left \mathscr{V} -action on $\mathscr{V}_{\mathscr{C}}\mathscr{C}$ as ",".

Let \mathscr{C} be a left \mathscr{V} -graded category. Then there is a left \mathscr{V} -actegory \mathscr{V},\mathscr{C} equipped with a fully faithful left \mathscr{V} -graded functor $\mathscr{C} \hookrightarrow \mathscr{V},\mathscr{C}$.

The canonical 2-functor ${}_{\mathscr{V}}\mathsf{ACT}^{\mathrm{strong}} \to {}_{\mathscr{V}}\mathsf{GCAT}$ has a left biadjoint whose unit consists of the above embeddings $\mathscr{C} \hookrightarrow \mathscr{V}_{\ell}\mathscr{C}$.

We call $\mathscr{V}_{\ell}\mathscr{C}$ the **enveloping actegory** of \mathscr{C} , and we identify \mathscr{C} with a full \mathscr{V} -graded subcategory of $\mathscr{V}_{\ell}\mathscr{C}$ under the embedding $\mathscr{C} \hookrightarrow \mathscr{V}_{\ell}\mathscr{C}$. We write the left \mathscr{V} -action on $\mathscr{V}_{\ell}\mathscr{C}$ as ",". Every object of $\mathscr{V}_{\ell}\mathscr{C}$ is isomorphic to $X_{\ell}A$ for some $X \in \operatorname{ob} \mathscr{V}$ and $A \in \operatorname{ob} \mathscr{C}$,

ヘロト ヘヨト ヘヨト

Let \mathscr{C} be a left \mathscr{V} -graded category. Then there is a left \mathscr{V} -actegory \mathscr{V},\mathscr{C} equipped with a fully faithful left \mathscr{V} -graded functor $\mathscr{C} \hookrightarrow \mathscr{V},\mathscr{C}$.

The canonical 2-functor ${}_{\mathscr{V}}\mathsf{ACT}^{\mathrm{strong}} \to {}_{\mathscr{V}}\mathsf{GCAT}$ has a left biadjoint whose unit consists of the above embeddings $\mathscr{C} \hookrightarrow \mathscr{V}_{\ell}\mathscr{C}$.

We call \mathscr{V},\mathscr{C} the **enveloping actegory** of \mathscr{C} , and we identify \mathscr{C} with a full \mathscr{V} -graded subcategory of \mathscr{V},\mathscr{C} under the embedding $\mathscr{C} \hookrightarrow \mathscr{V},\mathscr{C}$. We write the left \mathscr{V} -action on \mathscr{V},\mathscr{C} as ",". Every object of \mathscr{V},\mathscr{C} is isomorphic to X, A for some $X \in \operatorname{ob} \mathscr{V}$ and $A \in \operatorname{ob} \mathscr{C}$, and graded morphisms in \mathscr{C} are equivalently morphisms of the form $f: X, A \to B$ in the actegory \mathscr{V}, \mathscr{C} ,

・ロト ・ 一 ・ ・ ヨ ・ ・ 日 ・

Let \mathscr{C} be a left \mathscr{V} -graded category. Then there is a left \mathscr{V} -actegory \mathscr{V},\mathscr{C} equipped with a fully faithful left \mathscr{V} -graded functor $\mathscr{C} \hookrightarrow \mathscr{V},\mathscr{C}$.

The canonical 2-functor ${}_{\mathscr{V}}\mathsf{ACT}^{\mathrm{strong}} \to {}_{\mathscr{V}}\mathsf{GCAT}$ has a left biadjoint whose unit consists of the above embeddings $\mathscr{C} \hookrightarrow \mathscr{V}_{\ell}\mathscr{C}$.

We call \mathscr{V},\mathscr{C} the **enveloping actegory** of \mathscr{C} , and we identify \mathscr{C} with a full \mathscr{V} -graded subcategory of \mathscr{V},\mathscr{C} under the embedding $\mathscr{C} \hookrightarrow \mathscr{V},\mathscr{C}$. We write the left \mathscr{V} -action on \mathscr{V},\mathscr{C} as ",". Every object of \mathscr{V},\mathscr{C} is isomorphic to X,A for some $X \in \operatorname{ob} \mathscr{V}$ and $A \in \operatorname{ob} \mathscr{C}$, and graded morphisms in \mathscr{C} are equivalently morphisms of the form $f: X, A \to B$ in the actegory \mathscr{V},\mathscr{C} , where $A, B \in \operatorname{ob} \mathscr{C}$ and $X \in \operatorname{ob} \mathscr{V}$.

Composition and reindexing in a $\mathscr V\text{-}\mathsf{graded}$ category $\mathscr C$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶

Composition and reindexing in a $\mathscr{V}\text{-}\mathsf{graded}$ category \mathscr{C} can be depicted using commutative diagrams in the enveloping actegory $\mathscr{V}_{*}\mathscr{C}$

< 同 ▶ < ∃ ▶ < ∃ ▶

Composition and reindexing in a \mathscr{V} -graded category \mathscr{C} can be depicted using commutative diagrams in the enveloping actegory \mathscr{V},\mathscr{C} , which we call **envelope diagrams**:

(日)

Composition and reindexing in a \mathscr{V} -graded category \mathscr{C} can be depicted using commutative diagrams in the enveloping actegory $\mathscr{V}_{\mathcal{C}}$, which we call **envelope diagrams**: Given $f: X, A \to B$ and $g: Y, B \to C$ in \mathscr{C} ,

・ロト ・ 一 ・ ・ ヨ ・ ・ 日 ・

Composition and reindexing in a \mathscr{V} -graded category \mathscr{C} can be depicted using commutative diagrams in the enveloping actegory $\mathscr{V}_{\mathcal{C}}$, which we call **envelope diagrams**: Given $f: X, A \to B$ and $g: Y, B \to C$ in \mathscr{C} , and $\alpha: Y \to X$ in \mathscr{V} ,

・ロト ・ 一 マ ・ コ ト

Composition and reindexing in a \mathscr{V} -graded category \mathscr{C} can be depicted using commutative diagrams in the enveloping actegory $\mathscr{V}_{\ell}\mathscr{C}$, which we call **envelope diagrams**: Given $f: X, A \to B$ and $g: Y, B \to C$ in \mathscr{C} , and $\alpha: Y \to X$ in \mathscr{V} , the diagrams

Composition and reindexing in a \mathscr{V} -graded category \mathscr{C} can be depicted using commutative diagrams in the enveloping actegory $\mathscr{V}_{\ell}\mathscr{C}$, which we call **envelope diagrams**: Given $f: X, A \to B$ and $g: Y, B \to C$ in \mathscr{C} , and $\alpha: Y \to X$ in \mathscr{V} , the diagrams

in \mathscr{V},\mathscr{C} commute.

・ロト ・四ト ・ヨト ・ヨト

E

Right \mathscr{V} -graded categories

A right $\mathscr{V}\text{-}\mathsf{graded}$ category is a left $\mathscr{V}^{\mathsf{rev}}\text{-}\mathsf{graded}$ category.

◆□▶ ◆□▶ ◆注▶ ◆注▶

Right \mathscr{V} -graded categories

A **right** \mathscr{V} -**graded category** is a left \mathscr{V}^{rev} -graded category. Given a right \mathscr{V} -graded category \mathscr{C} ,

◆□▶ ◆□▶ ◆注▶ ◆注▶

Right \mathscr{V} -graded categories

A **right** \mathscr{V} -graded category is a left $\mathscr{V}^{\mathsf{rev}}$ -graded category. Given a right \mathscr{V} -graded category \mathscr{C} , we write $f : A, X \to B$

A right \mathscr{V} -graded category is a left \mathscr{V}^{rev} -graded category.

Given a right \mathscr{V} -graded category \mathscr{C} , we write $f : A, X \to B$ to mean that f is a graded morphism from A to B with grade X.

<ロト <回ト < 回ト < 回ト -

A right \mathscr{V} -graded category is a left \mathscr{V}^{rev} -graded category.

Given a right \mathscr{V} -graded category \mathscr{C} , we write $f : A, X \to B$ to mean that f is a graded morphism from A to B with grade X.

Consequently, the composite of $f:A,X\rightarrow B$ and $g:B,Y\rightarrow C$

イロト イヨト イヨト

A right $\mathscr{V}\text{-}\mathsf{graded}$ category is a left $\mathscr{V}^{\mathsf{rev}}\text{-}\mathsf{graded}$ category.

Given a right \mathscr{V} -graded category \mathscr{C} , we write $f : A, X \to B$ to mean that f is a graded morphism from A to B with grade X.

Consequently, the composite of $f : A, X \to B$ and $g : B, Y \to C$ is written as $g \circ f : A, X \otimes Y \to C$.

イロト イヨト イヨト
Given a right \mathscr{V} -graded category \mathscr{C} , we write $f : A, X \to B$ to mean that f is a graded morphism from A to B with grade X.

Consequently, the composite of $f : A, X \to B$ and $g : B, Y \to C$ is written as $g \circ f : A, X \otimes Y \to C$.

We have fully faithful 2-functors

イロト イヨト イヨト

Given a right \mathscr{V} -graded category \mathscr{C} , we write $f : A, X \to B$ to mean that f is a graded morphism from A to B with grade X.

Consequently, the composite of $f : A, X \to B$ and $g : B, Y \to C$ is written as $g \circ f : A, X \otimes Y \to C$.

We have fully faithful 2-functors

$$\mathsf{ACT}_\mathscr{V} \hookrightarrow \mathsf{GCAT}_\mathscr{V} \hookleftarrow \mathsf{CAT}_\mathscr{V}$$

イロト イヨト イヨト

Given a right \mathscr{V} -graded category \mathscr{C} , we write $f : A, X \to B$ to mean that f is a graded morphism from A to B with grade X.

Consequently, the composite of $f: A, X \to B$ and $g: B, Y \to C$ is written as $g \circ f: A, X \otimes Y \to C$.

We have fully faithful 2-functors

$$\mathsf{ACT}_\mathscr{V} \hookrightarrow \mathsf{GCAT}_\mathscr{V} \hookleftarrow \mathsf{CAT}_\mathscr{V}$$

so that right \mathscr{V} -actegories

Given a right \mathscr{V} -graded category \mathscr{C} , we write $f : A, X \to B$ to mean that f is a graded morphism from A to B with grade X.

Consequently, the composite of $f: A, X \to B$ and $g: B, Y \to C$ is written as $g \circ f: A, X \otimes Y \to C$.

We have fully faithful 2-functors

$$\mathsf{ACT}_\mathscr{V} \hookrightarrow \mathsf{GCAT}_\mathscr{V} \hookleftarrow \mathsf{CAT}_\mathscr{V}$$

so that right $\mathscr V\text{-}\mathsf{actegories}$ and right $\mathscr V\text{-}\mathsf{categories}$

Given a right \mathscr{V} -graded category \mathscr{C} , we write $f : A, X \to B$ to mean that f is a graded morphism from A to B with grade X.

Consequently, the composite of $f: A, X \to B$ and $g: B, Y \to C$ is written as $g \circ f: A, X \otimes Y \to C$.

We have fully faithful 2-functors

$$\mathsf{ACT}_\mathscr{V} \hookrightarrow \mathsf{GCAT}_\mathscr{V} \hookleftarrow \mathsf{CAT}_\mathscr{V}$$

so that right \mathscr{V} -actegories and right \mathscr{V} -categories may be regarded as right \mathscr{V} -graded categories.

・ロト ・ 雪 ト ・ ヨ ト ・ コ ト

Given a right \mathscr{V} -graded category \mathscr{C} , we write $f : A, X \to B$ to mean that f is a graded morphism from A to B with grade X.

Consequently, the composite of $f: A, X \to B$ and $g: B, Y \to C$ is written as $g \circ f: A, X \otimes Y \to C$.

We have fully faithful 2-functors

$$\mathsf{ACT}_\mathscr{V} \hookrightarrow \mathsf{GCAT}_\mathscr{V} \hookleftarrow \mathsf{CAT}_\mathscr{V}$$

so that right \mathscr{V} -actegories and right \mathscr{V} -categories may be regarded as right \mathscr{V} -graded categories.

Every right \mathscr{V} -graded category admits an embedding $\mathscr{C} \hookrightarrow \mathscr{C}_{\mathcal{V}} \mathscr{V}$

イロト イポト イヨト イヨト 三日

Given a right \mathscr{V} -graded category \mathscr{C} , we write $f : A, X \to B$ to mean that f is a graded morphism from A to B with grade X.

Consequently, the composite of $f: A, X \to B$ and $g: B, Y \to C$ is written as $g \circ f: A, X \otimes Y \to C$.

We have fully faithful 2-functors

$$\mathsf{ACT}_\mathscr{V} \hookrightarrow \mathsf{GCAT}_\mathscr{V} \hookleftarrow \mathsf{CAT}_\mathscr{V}$$

so that right \mathscr{V} -actegories and right \mathscr{V} -categories may be regarded as right \mathscr{V} -graded categories.

Every right \mathscr{V} -graded category admits an embedding $\mathscr{C} \hookrightarrow \mathscr{C}_{r}\mathscr{V}$ into the right \mathscr{V} -actegory $\mathscr{C}_{r}\mathscr{V} := \mathscr{V}^{\mathsf{rev}}_{r}\mathscr{C}$

イロト イポト イヨト イヨト 三日

Given a right \mathscr{V} -graded category \mathscr{C} , we write $f : A, X \to B$ to mean that f is a graded morphism from A to B with grade X.

Consequently, the composite of $f: A, X \to B$ and $g: B, Y \to C$ is written as $g \circ f: A, X \otimes Y \to C$.

We have fully faithful 2-functors

$$\mathsf{ACT}_\mathscr{V} \hookrightarrow \mathsf{GCAT}_\mathscr{V} \hookleftarrow \mathsf{CAT}_\mathscr{V}$$

so that right \mathscr{V} -actegories and right \mathscr{V} -categories may be regarded as right \mathscr{V} -graded categories.

Every right \mathscr{V} -graded category admits an embedding $\mathscr{C} \hookrightarrow \mathscr{C}, \mathscr{V}$ into the right \mathscr{V} -actegory $\mathscr{C}, \mathscr{V} := \mathscr{V}^{\mathsf{rev}} \mathscr{C}$ (the *enveloping* actegory),

(日)

Given a right \mathscr{V} -graded category \mathscr{C} , we write $f : A, X \to B$ to mean that f is a graded morphism from A to B with grade X.

Consequently, the composite of $f: A, X \to B$ and $g: B, Y \to C$ is written as $g \circ f: A, X \otimes Y \to C$.

We have fully faithful 2-functors

$$\mathsf{ACT}_\mathscr{V} \hookrightarrow \mathsf{GCAT}_\mathscr{V} \hookleftarrow \mathsf{CAT}_\mathscr{V}$$

so that right \mathscr{V} -actegories and right \mathscr{V} -categories may be regarded as right \mathscr{V} -graded categories.

Every right \mathscr{V} -graded category admits an embedding $\mathscr{C} \hookrightarrow \mathscr{C}, \mathscr{V}$ into the right \mathscr{V} -actegory $\mathscr{C}, \mathscr{V} := \mathscr{V}^{\mathsf{rev}}, \mathscr{C}$ (the *enveloping actegory*), whose action we write as $A, X \ (A \in \mathscr{C}, X \in \mathscr{V})$.

・ロット (空)・ (日)・ (日)・ 日

E

・ロト ・四ト ・ヨト ・ヨト

Let $\mathscr V$ and $\mathscr W$ be monoidal categories.

э

・ロト ・四ト ・ヨト ・ヨト

Let ${\mathscr V}$ and ${\mathscr W}$ be monoidal categories.

A \mathscr{V} - \mathscr{W} -bigraded category is a left ($\mathscr{V} \times \mathscr{W}^{\mathsf{rev}}$)-graded category.

<ロト <回ト < 回ト < 回ト < 回ト -

Let ${\mathscr V}$ and ${\mathscr W}$ be monoidal categories.

A \mathscr{V} - \mathscr{W} -bigraded category is a left ($\mathscr{V} \times \mathscr{W}^{\mathsf{rev}}$)-graded category.

In a $\mathscr{V}\text{-}\mathscr{W}\text{-}\mathsf{bigraded}$ category $\mathscr{C}\text{, we write}$

Let ${\mathscr V}$ and ${\mathscr W}$ be monoidal categories.

A \mathscr{V} - \mathscr{W} -bigraded category is a left ($\mathscr{V} \times \mathscr{W}^{\mathsf{rev}}$)-graded category.

In a $\mathscr{V}\text{-}\mathscr{W}\text{-}\mathsf{bigraded}$ category $\mathscr{C}\text{, we write}$

 $f:X,A,Y\to B$

イロト イヨト イヨト

Let \mathscr{V} and \mathscr{W} be monoidal categories. A \mathscr{V} - \mathscr{W} -**bigraded category** is a left ($\mathscr{V} \times \mathscr{W}^{\mathsf{rev}}$)-graded category. In a \mathscr{V} - \mathscr{W} -bigraded category \mathscr{C} , we write

$$f: X, A, Y \to B$$

to mean that f is a graded morphism from A to B with grade $(X,Y)\in {\rm ob}\,\mathscr{V}\times {\rm ob}\,\mathscr{W}.$

٠

・ロッ ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・

Let \mathscr{V} and \mathscr{W} be monoidal categories. A \mathscr{V} - \mathscr{W} -**bigraded category** is a left ($\mathscr{V} \times \mathscr{W}^{rev}$)-graded category. In a \mathscr{V} - \mathscr{W} -bigraded category \mathscr{C} , we write

$$f: X, A, Y \to B$$

to mean that f is a graded morphism from A to B with grade $(X,Y)\in {\rm ob}\,\mathscr{V}\times {\rm ob}\,\mathscr{W}.$

Every $\mathscr{V}\text{-}\mathscr{W}\text{-}\mathsf{bigraded}$ category has an underlying left $\mathscr{V}\text{-}\mathsf{graded}$ category

Let \mathscr{V} and \mathscr{W} be monoidal categories. A \mathscr{V} - \mathscr{W} -**bigraded category** is a left ($\mathscr{V} \times \mathscr{W}^{rev}$)-graded category. In a \mathscr{V} - \mathscr{W} -bigraded category \mathscr{C} , we write

$$f: X, A, Y \to B$$

to mean that f is a graded morphism from A to B with grade $(X,Y)\in {\rm ob}\,\mathscr{V}\times {\rm ob}\,\mathscr{W}.$

Every \mathscr{V} - \mathscr{W} -bigraded category has an underlying left \mathscr{V} -graded category and an underlying right \mathscr{W} -graded category.

Let \mathscr{V} and \mathscr{W} be monoidal categories. A \mathscr{V} - \mathscr{W} -**bigraded category** is a left ($\mathscr{V} \times \mathscr{W}^{rev}$)-graded category. In a \mathscr{V} - \mathscr{W} -bigraded category \mathscr{C} , we write

$$f: X, A, Y \to B$$

to mean that f is a graded morphism from A to B with grade $(X,Y)\in {\rm ob}\,\mathscr{V}\times {\rm ob}\,\mathscr{W}.$

Every \mathscr{V} - \mathscr{W} -bigraded category has an underlying left \mathscr{V} -graded category and an underlying right \mathscr{W} -graded category.

The 2-category of \mathscr{V} - \mathscr{W} -bigraded categories:

$${}_{\mathscr{V}}\mathsf{GCAT}_{\mathscr{W}}:={}_{\mathscr{V}\times\mathscr{W}^{\mathsf{rev}}}\mathsf{GCAT}$$
 .

Example. A \mathscr{V} - \mathscr{W} -biactegory

э

・ロト ・四ト ・ヨト ・ヨト

Example. A \mathscr{V} - \mathscr{W} -biactegory is a left ($\mathscr{V} \times \mathscr{W}^{rev}$)-actegory,

◆□▶ ◆□▶ ◆注▶ ◆注▶

Example. A \mathscr{V} - \mathscr{W} -biactegory is a left $(\mathscr{V} \times \mathscr{W}^{\mathsf{rev}})$ -actegory, whose associated functor $\mathscr{V} \times \mathscr{C} \times \mathscr{W} \to \mathscr{C}$ is written as a two-sided action $(X, A, Y) \mapsto X.A.Y$.

イロト イボト イヨト

Example. A \mathscr{V} - \mathscr{W} -biactegory is a left $(\mathscr{V} \times \mathscr{W}^{\mathsf{rev}})$ -actegory, whose associated functor $\mathscr{V} \times \mathscr{C} \times \mathscr{W} \to \mathscr{C}$ is written as a two-sided action $(X, A, Y) \mapsto X.A.Y$.

[Skŏda], [Capucci-Gavranović]

イロト イポト イヨト イヨト

Example. A \mathscr{V} - \mathscr{W} -biactegory is a left $(\mathscr{V} \times \mathscr{W}^{\mathsf{rev}})$ -actegory, whose associated functor $\mathscr{V} \times \mathscr{C} \times \mathscr{W} \to \mathscr{C}$ is written as a two-sided action $(X, A, Y) \mapsto X.A.Y$.

[Skŏda], [Capucci-Gavranović]

Every \mathscr{V} - \mathscr{W} -biactegory may be regarded as a \mathscr{V} - \mathscr{W} -bigraded category.

イロト イヨト イヨト

Example. A \mathscr{V} - \mathscr{W} -biactegory is a left $(\mathscr{V} \times \mathscr{W}^{\mathsf{rev}})$ -actegory, whose associated functor $\mathscr{V} \times \mathscr{C} \times \mathscr{W} \to \mathscr{C}$ is written as a two-sided action $(X, A, Y) \mapsto X.A.Y$.

[Skŏda], [Capucci-Gavranović]

Every \mathscr{V} - \mathscr{W} -biactegory may be regarded as a \mathscr{V} - \mathscr{W} -bigraded category.

Every $\mathscr{V}\text{-}\mathscr{W}\text{-bigraded}$ category \mathscr{C} admits an embedding $\mathscr{C}\hookrightarrow\mathscr{V}\!\!,\!\mathscr{C}\!\!,\!\mathscr{W}$

Example. A \mathscr{V} - \mathscr{W} -biactegory is a left $(\mathscr{V} \times \mathscr{W}^{\text{rev}})$ -actegory, whose associated functor $\mathscr{V} \times \mathscr{C} \times \mathscr{W} \to \mathscr{C}$ is written as a two-sided action $(X, A, Y) \mapsto X.A.Y$.

[Skŏda], [Capucci-Gavranović]

Every \mathscr{V} - \mathscr{W} -biactegory may be regarded as a \mathscr{V} - \mathscr{W} -bigraded category.

 $\begin{array}{l} \mathsf{Every}\ \mathscr{V}\text{-}\mathscr{W}\text{-}\mathsf{bigraded}\ \mathsf{category}\ \mathscr{C}\ \mathsf{admits}\ \mathsf{an}\ \mathsf{embedding}\\ \mathscr{C}\hookrightarrow\mathscr{V},\mathscr{C},\mathscr{W}\ \mathsf{into}\ \mathsf{the}\ \mathscr{V}\text{-}\mathscr{W}\text{-}\mathsf{biactegory}\ \mathscr{V},\mathscr{C},\mathscr{W}:=(\mathscr{V}\times\mathscr{W}^{\mathsf{rev}}),\mathscr{C} \end{array}$

Example. A \mathscr{V} - \mathscr{W} -biactegory is a left $(\mathscr{V} \times \mathscr{W}^{\text{rev}})$ -actegory, whose associated functor $\mathscr{V} \times \mathscr{C} \times \mathscr{W} \to \mathscr{C}$ is written as a two-sided action $(X, A, Y) \mapsto X.A.Y$.

[Skŏda], [Capucci-Gavranović]

Every \mathscr{V} - \mathscr{W} -biactegory may be regarded as a \mathscr{V} - \mathscr{W} -bigraded category.

Every \mathscr{V} - \mathscr{W} -bigraded category \mathscr{C} admits an embedding $\mathscr{C} \hookrightarrow \mathscr{V}, \mathscr{C}, \mathscr{W}$ into the \mathscr{V} - \mathscr{W} -biactegory $\mathscr{V}, \mathscr{C}, \mathscr{W} := (\mathscr{V} \times \mathscr{W}^{\mathsf{rev}}), \mathscr{C}$ (the *enveloping biactegory*),

Example. A \mathscr{V} - \mathscr{W} -biactegory is a left $(\mathscr{V} \times \mathscr{W}^{\text{rev}})$ -actegory, whose associated functor $\mathscr{V} \times \mathscr{C} \times \mathscr{W} \to \mathscr{C}$ is written as a two-sided action $(X, A, Y) \mapsto X.A.Y$.

[Skŏda], [Capucci-Gavranović]

Every \mathscr{V} - \mathscr{W} -biactegory may be regarded as a \mathscr{V} - \mathscr{W} -bigraded category.

Every \mathscr{V} - \mathscr{W} -bigraded category \mathscr{C} admits an embedding $\mathscr{C} \hookrightarrow \mathscr{V}, \mathscr{C}, \mathscr{W}$ into the \mathscr{V} - \mathscr{W} -biactegory $\mathscr{V}, \mathscr{C}, \mathscr{W} := (\mathscr{V} \times \mathscr{W}^{\mathsf{rev}}), \mathscr{C}$ (the *enveloping biactegory*), whose action we write as X, E, Y $(X \in \mathscr{V}, E \in \mathscr{V}, \mathscr{C}, Y \in \mathscr{W}).$

Example. A \mathscr{V} - \mathscr{W} -biactegory is a left $(\mathscr{V} \times \mathscr{W}^{\mathsf{rev}})$ -actegory, whose associated functor $\mathscr{V} \times \mathscr{C} \times \mathscr{W} \to \mathscr{C}$ is written as a two-sided action $(X, A, Y) \mapsto X.A.Y$.

[Skŏda], [Capucci-Gavranović]

Every \mathscr{V} - \mathscr{W} -biactegory may be regarded as a \mathscr{V} - \mathscr{W} -bigraded category.

Every \mathscr{V} - \mathscr{W} -bigraded category \mathscr{C} admits an embedding $\mathscr{C} \hookrightarrow \mathscr{V}, \mathscr{C}, \mathscr{W}$ into the \mathscr{V} - \mathscr{W} -biactegory $\mathscr{V}, \mathscr{C}, \mathscr{W} := (\mathscr{V} \times \mathscr{W}^{\mathsf{rev}}), \mathscr{C}$ (the *enveloping biactegory*), whose action we write as X, E, Y $(X \in \mathscr{V}, E \in \mathscr{V}, \mathscr{C}, Y \in \mathscr{W}).$

Example. \mathscr{V} is a \mathscr{V} - \mathscr{V} -biactegory

Example. A \mathscr{V} - \mathscr{W} -biactegory is a left $(\mathscr{V} \times \mathscr{W}^{\text{rev}})$ -actegory, whose associated functor $\mathscr{V} \times \mathscr{C} \times \mathscr{W} \to \mathscr{C}$ is written as a two-sided action $(X, A, Y) \mapsto X.A.Y$.

[Skŏda], [Capucci-Gavranović]

Every $\mathscr{V}\text{-}\mathscr{W}\text{-}\text{biactegory}$ may be regarded as a $\mathscr{V}\text{-}\mathscr{W}\text{-}\text{bigraded}$ category.

Every \mathscr{V} - \mathscr{W} -bigraded category \mathscr{C} admits an embedding $\mathscr{C} \hookrightarrow \mathscr{V}, \mathscr{C}, \mathscr{W}$ into the \mathscr{V} - \mathscr{W} -biactegory $\mathscr{V}, \mathscr{C}, \mathscr{W} := (\mathscr{V} \times \mathscr{W}^{\mathsf{rev}}), \mathscr{C}$ (the *enveloping biactegory*), whose action we write as X, E, Y $(X \in \mathscr{V}, E \in \mathscr{V}, \mathscr{C}, Y \in \mathscr{W}).$

Example. \mathscr{V} is a \mathscr{V} - \mathscr{V} -biactegory and so may be regarded as a \mathscr{V} - \mathscr{V} -bigraded category.

(日)

Example. A \mathscr{V} - \mathscr{W} -biactegory is a left $(\mathscr{V} \times \mathscr{W}^{\mathsf{rev}})$ -actegory, whose associated functor $\mathscr{V} \times \mathscr{C} \times \mathscr{W} \to \mathscr{C}$ is written as a two-sided action $(X, A, Y) \mapsto X.A.Y$.

[Skŏda], [Capucci-Gavranović]

Every \mathscr{V} - \mathscr{W} -biactegory may be regarded as a \mathscr{V} - \mathscr{W} -bigraded category.

Every \mathscr{V} - \mathscr{W} -bigraded category \mathscr{C} admits an embedding $\mathscr{C} \hookrightarrow \mathscr{V}, \mathscr{C}, \mathscr{W}$ into the \mathscr{V} - \mathscr{W} -biactegory $\mathscr{V}, \mathscr{C}, \mathscr{W} := (\mathscr{V} \times \mathscr{W}^{\mathsf{rev}}), \mathscr{C}$ (the *enveloping biactegory*), whose action we write as X, E, Y $(X \in \mathscr{V}, E \in \mathscr{V}, \mathscr{C}, Y \in \mathscr{W}).$

Example. \mathscr{V} is a \mathscr{V} - \mathscr{V} -biactegory and so may be regarded as a \mathscr{V} - \mathscr{V} -bigraded category. Similarly, $\widehat{\mathscr{V}}$ is a \mathscr{V} - \mathscr{V} -biactegory.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

E

<ロト <回ト < 回ト < 回ト -

Let \mathscr{A} be a left $\mathscr{V}\text{-}\mathsf{graded}$ category,

э

<ロト <回ト < 回ト < 回ト < 回ト -

Let \mathscr{A} be a left $\mathscr{V}\text{-}\mathsf{graded}$ category, and let \mathscr{C} be a $\mathscr{V}\text{-}\mathscr{W}\text{-}\mathsf{bigraded}$ category.

э

・ロト ・回ト ・ヨト ・ヨト

Let \mathscr{A} be a left \mathscr{V} -graded category, and let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category. Given left \mathscr{V} -graded functors $F, G : \mathscr{A} \rightrightarrows \mathscr{C}$

・ロト ・ 一 ・ ・ ヨ ・ ・ 日 ・

Let \mathscr{A} be a left \mathscr{V} -graded category, and let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category. Given left \mathscr{V} -graded functors $F, G : \mathscr{A} \rightrightarrows \mathscr{C}$ and an object $Y \in \operatorname{ob} \mathscr{W}$,

・ロト ・ 一 マ ・ 日 ・ ・ 日 ・

Let \mathscr{A} be a left \mathscr{V} -graded category, and let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category. Given left \mathscr{V} -graded functors $F, G : \mathscr{A} \rightrightarrows \mathscr{C}$ and an object $Y \in \operatorname{ob} \mathscr{W}$, a graded transformation $\phi : F, Y \Rightarrow G$

- 4 同 ト 4 ヨ ト
Let \mathscr{A} be a left \mathscr{V} -graded category, and let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category. Given left \mathscr{V} -graded functors $F, G : \mathscr{A} \rightrightarrows \mathscr{C}$ and an object $Y \in \operatorname{ob} \mathscr{W}$, a graded transformation $\phi : F, Y \Rightarrow G$ is a family of graded morphisms $\phi_A : FA, Y \to GA \ (A \in \operatorname{ob} \mathscr{A})$ in \mathscr{C}

ヘロト ヘヨト ヘヨト

Let \mathscr{A} be a left \mathscr{V} -graded category, and let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category. Given left \mathscr{V} -graded functors $F, G : \mathscr{A} \rightrightarrows \mathscr{C}$ and an object $Y \in \operatorname{ob} \mathscr{W}$, a graded transformation $\phi : F, Y \Rightarrow G$ is a family of graded morphisms $\phi_A : FA, Y \to GA \ (A \in \operatorname{ob} \mathscr{A})$ in \mathscr{C} that are left \mathscr{V} -graded natural in $A \in \mathscr{A}$

Let \mathscr{A} be a left \mathscr{V} -graded category, and let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category. Given left \mathscr{V} -graded functors $F, G : \mathscr{A} \rightrightarrows \mathscr{C}$ and an object $Y \in \operatorname{ob} \mathscr{W}$, a graded transformation $\phi : F, Y \Rightarrow G$ is a family of graded morphisms $\phi_A : FA, Y \to GA \ (A \in \operatorname{ob} \mathscr{A})$ in \mathscr{C} that are left \mathscr{V} -graded natural in $A \in \mathscr{A}$ in the sense that the following envelope diagram commutes for every graded morphism $f : X, A \to B$ in \mathscr{A} :

ヘロト ヘ戸ト ヘヨト ヘヨト

Let \mathscr{A} be a left \mathscr{V} -graded category, and let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category. Given left \mathscr{V} -graded functors $F, G : \mathscr{A} \rightrightarrows \mathscr{C}$ and an object $Y \in \operatorname{ob} \mathscr{W}$, a graded transformation $\phi : F, Y \Rightarrow G$ is a family of graded morphisms $\phi_A : FA, Y \to GA \ (A \in \operatorname{ob} \mathscr{A})$ in \mathscr{C} that are left \mathscr{V} -graded natural in $A \in \mathscr{A}$ in the sense that the following envelope diagram commutes for every graded morphism $f : X, A \to B$ in \mathscr{A} :

$$\begin{array}{c|c} X, FA, Y \xrightarrow{X, \phi_A} X, GA \\ Ff, Y & & & \downarrow Gf \\ FB, Y \xrightarrow{\phi_B} GB \end{array}$$

・ロト ・ 一 ・ ・ ヨ ・ ・ 日 ・

Let \mathscr{A} be a left \mathscr{V} -graded category, and let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category. Given left \mathscr{V} -graded functors $F, G : \mathscr{A} \rightrightarrows \mathscr{C}$ and an object $Y \in \operatorname{ob} \mathscr{W}$, a graded transformation $\phi : F, Y \Rightarrow G$ is a family of graded morphisms $\phi_A : FA, Y \to GA \ (A \in \operatorname{ob} \mathscr{A})$ in \mathscr{C} that are left \mathscr{V} -graded natural in $A \in \mathscr{A}$ in the sense that the following envelope diagram commutes for every graded morphism $f : X, A \to B$ in \mathscr{A} :

$$\begin{array}{c|c} X, FA, Y \xrightarrow{X, \phi_A} X, GA \\ Ff, Y & & & \downarrow Gf \\ FB, Y \xrightarrow{\phi_B} GB \end{array}$$

Given instead a right ${\mathscr W}\text{-}\mathsf{graded}$ category ${\mathscr B}$

Let \mathscr{A} be a left \mathscr{V} -graded category, and let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category. Given left \mathscr{V} -graded functors $F, G : \mathscr{A} \rightrightarrows \mathscr{C}$ and an object $Y \in \operatorname{ob} \mathscr{W}$, a graded transformation $\phi : F, Y \Rightarrow G$ is a family of graded morphisms $\phi_A : FA, Y \to GA \ (A \in \operatorname{ob} \mathscr{A})$ in \mathscr{C} that are left \mathscr{V} -graded natural in $A \in \mathscr{A}$ in the sense that the following envelope diagram commutes for every graded morphism $f : X, A \to B$ in \mathscr{A} :

$$\begin{array}{c|c} X, FA, Y \xrightarrow{X, \phi_A} X, GA \\ Ff, Y & & & \downarrow Gf \\ FB, Y \xrightarrow{\phi_B} GB \end{array}$$

Given instead a right \mathscr{W} -graded category \mathscr{B} and a \mathscr{V} - \mathscr{W} -bigraded category \mathscr{C} ,

・ロト ・ 四ト ・ ヨト ・ ヨト

Let \mathscr{A} be a left \mathscr{V} -graded category, and let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category. Given left \mathscr{V} -graded functors $F, G : \mathscr{A} \rightrightarrows \mathscr{C}$ and an object $Y \in \operatorname{ob} \mathscr{W}$, a graded transformation $\phi : F, Y \Rightarrow G$ is a family of graded morphisms $\phi_A : FA, Y \to GA \ (A \in \operatorname{ob} \mathscr{A})$ in \mathscr{C} that are left \mathscr{V} -graded natural in $A \in \mathscr{A}$ in the sense that the following envelope diagram commutes for every graded morphism $f : X, A \to B$ in \mathscr{A} :

$$\begin{array}{c|c} X, FA, Y \xrightarrow{X, \phi_A} X, GA \\ Ff, Y & & & \downarrow Gf \\ FB, Y \xrightarrow{\phi_B} GB \end{array}$$

Given instead a right \mathscr{W} -graded category \mathscr{B} and a \mathscr{V} - \mathscr{W} -bigraded category \mathscr{C} , we can similarly define **graded transformations** $\phi: X, F \Rightarrow G$

・ロト ・ 四ト ・ ヨト ・ ヨト

Let \mathscr{A} be a left \mathscr{V} -graded category, and let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category. Given left \mathscr{V} -graded functors $F, G : \mathscr{A} \rightrightarrows \mathscr{C}$ and an object $Y \in \operatorname{ob} \mathscr{W}$, a graded transformation $\phi : F, Y \Rightarrow G$ is a family of graded morphisms $\phi_A : FA, Y \to GA \ (A \in \operatorname{ob} \mathscr{A})$ in \mathscr{C} that are left \mathscr{V} -graded natural in $A \in \mathscr{A}$ in the sense that the following envelope diagram commutes for every graded morphism $f : X, A \to B$ in \mathscr{A} :

$$\begin{array}{c|c} X, FA, Y \xrightarrow{X, \phi_A} X, GA \\ Ff, Y & & & \downarrow Gf \\ FB, Y \xrightarrow{\phi_B} GB \end{array}$$

Given instead a right \mathscr{W} -graded category \mathscr{B} and a \mathscr{V} - \mathscr{W} -bigraded category \mathscr{C} , we can similarly define **graded transformations** $\phi: X, F \Rightarrow G$ between right \mathscr{W} -graded functors $F, G: \mathscr{B} \rightrightarrows \mathscr{C}$.

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・

Graded functor categories

・ロト ・四ト ・ヨト ・ヨト

E

Let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category.

- 4 回 ト 4 注 ト 4 注 ト

Let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category.

• If \mathscr{A} is a left \mathscr{V} -graded category,

▲□ ▶ ▲ 三 ▶ ▲

Let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category.

 If A is a left V-graded category, then left V-graded functors from A to C

Let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category.

If A is a left V -graded category, then left V -graded functors from A to C are the objects of a right W -graded category ^V[A, C]_W

Let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category.

If A is a left V-graded category, then left V-graded functors from A to C are the objects of a right W-graded category ^V[A, C]_W that we denote also by [A, C],

Let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category.

If A is a left V-graded category, then left V-graded functors from A to C are the objects of a right W-graded category ^V[A, C]_W that we denote also by [A, C], in which a graded morphism is a graded transformation.

Let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category.

If A is a left V-graded category, then left V-graded functors from A to C are the objects of a right W-graded category ^V[A, C]_W that we denote also by [A, C], in which a graded morphism is a graded transformation.

2 If \mathscr{B} is a right \mathscr{W} -graded category,

Let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category.

- If A is a left V-graded category, then left V-graded functors from A to C are the objects of a right W-graded category ^V[A, C]_W that we denote also by [A, C], in which a graded morphism is a graded transformation.
- If *B* is a right *W*-graded category, then right *W*-graded functors from *B* to *C*

Let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category.

- If A is a left V-graded category, then left V-graded functors from A to C are the objects of a right W-graded category ^V[A, C]_W that we denote also by [A, C], in which a graded morphism is a graded transformation.
- If B is a right W-graded category, then right W-graded functors from B to C are the objects of a left V-graded category _V[B, C]^W

Let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category.

- If A is a left V-graded category, then left V-graded functors from A to C are the objects of a right W-graded category ^V[A, C]_W that we denote also by [A, C], in which a graded morphism is a graded transformation.
- If B is a right W-graded category, then right W-graded functors from B to C are the objects of a left V-graded category _V[B, C]^W that we denote also by [B, C].

Example. Let \mathscr{A} be a left \mathscr{V} -graded category.

・ロト ・四ト ・ヨト ・ヨト

Example. Let \mathscr{A} be a left \mathscr{V} -graded category. Then \mathscr{V} and $\hat{\mathscr{V}}$ are \mathscr{V} - \mathscr{V} -bigraded categories,

イロト イボト イヨト イヨト

A (B) < (B) < (B) < (B) </p>

$$[\mathscr{A},\mathscr{V}], \qquad [\mathscr{A},\hat{\mathscr{V}}].$$

A (B) < (B) < (B) < (B) </p>

$$[\mathscr{A},\mathscr{V}], \qquad [\mathscr{A},\hat{\mathscr{V}}].$$

Example. Let \mathscr{A} be a left \mathscr{V} -graded category.

$$[\mathscr{A},\mathscr{V}], \quad [\mathscr{A}, \mathscr{V}].$$

Example. Let \mathscr{A} be a left $\mathscr{V}\text{-}\mathsf{graded}$ category. Then the formal opposite \mathscr{A}°

(4回) (日) (日)

$$[\mathscr{A},\mathscr{V}], \quad [\mathscr{A},\hat{\mathscr{V}}].$$

Example. Let \mathscr{A} be a left \mathscr{V} -graded category. Then the formal opposite \mathscr{A}° is a *right* \mathscr{V} -graded category,

(4回) (日) (日)

$$[\mathscr{A},\mathscr{V}], \quad [\mathscr{A},\hat{\mathscr{V}}].$$

Example. Let \mathscr{A} be a left \mathscr{V} -graded category. Then the formal opposite \mathscr{A}° is a *right* \mathscr{V} -graded category, so we obtain left \mathscr{V} -graded categories

$$[\mathscr{A},\mathscr{V}], \quad [\mathscr{A},\hat{\mathscr{V}}].$$

Example. Let \mathscr{A} be a left \mathscr{V} -graded category. Then the formal opposite \mathscr{A}° is a *right* \mathscr{V} -graded category, so we obtain left \mathscr{V} -graded categories

$$[\mathscr{A}^{\circ}, \mathscr{V}], \qquad [\mathscr{A}^{\circ}, \hat{\mathscr{V}}].$$

The latter is isomorphic to Street's $\hat{\mathscr{V}}\text{-enriched}$ presheaf category $\mathcal{P}(\mathscr{A})$

・ 同 ト ・ ヨ ト ・ ヨ ト

$$[\mathscr{A},\mathscr{V}], \quad [\mathscr{A},\hat{\mathscr{V}}].$$

Example. Let \mathscr{A} be a left \mathscr{V} -graded category. Then the formal opposite \mathscr{A}° is a *right* \mathscr{V} -graded category, so we obtain left \mathscr{V} -graded categories

$$[\mathscr{A}^{\circ},\mathscr{V}], \qquad [\mathscr{A}^{\circ},\hat{\mathscr{V}}].$$

The latter is isomorphic to Street's $\hat{\mathscr{V}}$ -enriched presheaf category $\mathcal{P}(\mathscr{A})$ for the biclosed base of enrichment $\hat{\mathscr{V}}$.

E

< ロ > < 部 > < き > < き > ...

Let \mathscr{A} be a left $\mathscr{V}\text{-}\mathsf{graded}$ category,

Э

<ロト <回ト < 回ト < 回ト < 回ト -

Let \mathscr{A} be a left $\mathscr{V}\text{-}\mathsf{graded}$ category, let \mathscr{B} be a right $\mathscr{W}\text{-}\mathsf{graded}$ category,

э

・ロト ・ 四 ト ・ ヨ ト ・ ヨ ト ・

Let \mathscr{A} be a left \mathscr{V} -graded category, let \mathscr{B} be a right \mathscr{W} -graded category, and let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category.

(4月) キョン キョン

Let \mathscr{A} be a left \mathscr{V} -graded category, let \mathscr{B} be a right \mathscr{W} -graded category, and let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category. A $(\mathscr{V}-\mathscr{W}-)$ graded bifunctor $F: \mathscr{A}, \mathscr{B} \to \mathscr{C}$ consists of

・ロト ・ 同ト ・ ヨト・

Let \mathscr{A} be a left \mathscr{V} -graded category, let \mathscr{B} be a right \mathscr{W} -graded category, and let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category. A $(\mathscr{V}-\mathscr{W}-)$ graded bifunctor $F: \mathscr{A}, \mathscr{B} \to \mathscr{C}$ consists of

 $\label{eq:first} \blacksquare \ \text{left} \ \mathscr{V}\text{-}\text{graded functors} \ F(-,B): \mathscr{A} \to \mathscr{C} \ (B \in \mathsf{ob} \ \mathscr{B}) \ \text{and}$

・ 同 ト ・ ヨ ト ・ ヨ ト

Let \mathscr{A} be a left \mathscr{V} -graded category, let \mathscr{B} be a right \mathscr{W} -graded category, and let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category. A $(\mathscr{V}-\mathscr{W}-)$ graded bifunctor $F: \mathscr{A}, \mathscr{B} \to \mathscr{C}$ consists of

- ${\rm \textcircled{0}} \ \ {\rm left} \ \ \mathscr{V}{\rm -graded} \ {\rm functors} \ F(-,B): \mathscr{A} \to \mathscr{C} \ (B \in {\rm ob} \ \mathscr{B}) \ {\rm and}$
- $@ \ \text{right} \ \mathscr{W}\text{-}\text{graded functors} \ F(A,-):\mathscr{B} \to \mathscr{C} \ (A \in \mathsf{ob} \ \mathscr{A}) \\ \\$

・ロト ・ 一 ・ ・ ヨ ・ ・ 日 ・
Let \mathscr{A} be a left \mathscr{V} -graded category, let \mathscr{B} be a right \mathscr{W} -graded category, and let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category. A $(\mathscr{V}-\mathscr{W}-)$ graded bifunctor $F: \mathscr{A}, \mathscr{B} \to \mathscr{C}$ consists of

 ${\rm ④} \ \ {\rm left} \ {\mathscr V}{\rm -graded} \ {\rm functors} \ F(-,B): {\mathscr A} \to {\mathscr C} \ (B \in {\rm ob} \ {\mathscr B}) \ {\rm and} \$

② right *W*-graded functors F(A, -) : *B* → *C* ($A \in ob \mathscr{A}$) that agree on objects,

Let \mathscr{A} be a left \mathscr{V} -graded category, let \mathscr{B} be a right \mathscr{W} -graded category, and let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category. A $(\mathscr{V}-\mathscr{W}-)$ graded bifunctor $F: \mathscr{A}, \mathscr{B} \to \mathscr{C}$ consists of

 ${\rm \bullet} \ \, {\rm left} \ \, {\mathscr V}{\rm -graded} \ \, {\rm functors} \ \, F(-,B): {\mathscr A} \to {\mathscr C} \ \, (B \in {\rm ob} \ \, {\mathscr B}) \ \, {\rm and} \ \,$

graded functors F(A, -): ℬ → 𝔅 (A ∈ ob 𝔄)

that agree on objects, such that for all $f:X,A\to A'$ in $\mathscr A$ and $g:B,Y\to B'$ in $\mathscr B$

Let \mathscr{A} be a left \mathscr{V} -graded category, let \mathscr{B} be a right \mathscr{W} -graded category, and let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category. A $(\mathscr{V}-\mathscr{W}-)$ graded bifunctor $F: \mathscr{A}, \mathscr{B} \to \mathscr{C}$ consists of

 ${\rm \bullet} \ \, {\rm left} \ \, {\mathscr V}{\rm -graded} \ \, {\rm functors} \ \, F(-,B): {\mathscr A} \to {\mathscr C} \ \, (B \in {\rm ob} \ \, {\mathscr B}) \ \, {\rm and} \ \,$

 $@ \ {\rm right} \ {\mathscr W} {\rm -graded} \ {\rm functors} \ F(A,-): {\mathscr B} \to {\mathscr C} \ (A \in {\rm ob} \, {\mathscr A}) \\$

that agree on objects, such that for all $f: X, A \to A'$ in \mathscr{A} and $g: B, Y \to B'$ in \mathscr{B} the following envelope diagram commutes:

Let \mathscr{A} be a left \mathscr{V} -graded category, let \mathscr{B} be a right \mathscr{W} -graded category, and let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category. A $(\mathscr{V}-\mathscr{W}-)$ graded bifunctor $F: \mathscr{A}, \mathscr{B} \to \mathscr{C}$ consists of

 $\bullet \quad \text{left } \mathscr{V}\text{-}\text{graded functors } F(-,B):\mathscr{A} \to \mathscr{C} \ (B \in \mathsf{ob}\, \mathscr{B}) \text{ and}$

 $@ right \ {\mathscr W} - {\rm graded} \ {\rm functors} \ F(A,-): {\mathscr B} \to {\mathscr C} \ (A \in {\rm ob} \ {\mathscr A})$

that agree on objects, such that for all $f: X, A \to A'$ in \mathscr{A} and $g: B, Y \to B'$ in \mathscr{B} the following envelope diagram commutes:

$$\begin{array}{c|c} X, F(A,B), Y & \xrightarrow{X, F(A,g)} & X, F(A,B') \\ F(f,B), Y & & & \downarrow F(f,B') \\ F(A',B), Y & \xrightarrow{F(A',g)} & F(A',B') \end{array}$$

Let \mathscr{A} be a left \mathscr{V} -graded category, let \mathscr{B} be a right \mathscr{W} -graded category, and let \mathscr{C} be a \mathscr{V} - \mathscr{W} -bigraded category. A $(\mathscr{V}-\mathscr{W}-)$ graded bifunctor $F: \mathscr{A}, \mathscr{B} \to \mathscr{C}$ consists of

 ${\rm \bullet} \ \, {\rm left} \ \, {\mathscr V}{\rm -graded} \ \, {\rm functors} \ \, F(-,B): {\mathscr A} \to {\mathscr C} \ \, (B \in {\rm ob} \ \, {\mathscr B}) \ \, {\rm and} \ \,$

② right *W*-graded functors F(A, -) : *B* → *C* ($A \in ob \mathscr{A}$)

that agree on objects, such that for all $f: X, A \to A'$ in \mathscr{A} and $g: B, Y \to B'$ in \mathscr{B} the following envelope diagram commutes:

$$\begin{array}{c|c} X, F(A,B), Y & \xrightarrow{X, F(A,g)} & X, F(A,B') \\ F(f,B), Y & & & \downarrow F(f,B') \\ F(A',B), Y & \xrightarrow{F(A',g)} & F(A',B') \end{array}$$

Graded bifunctors $F : \mathscr{A}, \mathscr{B} \to \mathscr{C}$ are the objects of a category ${}_{\mathscr{V}}\mathsf{GBif}_{\mathscr{W}}(\mathscr{A}, \mathscr{B}; \mathscr{C}).$

イロト イヨト イヨト

The bigraded product

E

Let \mathscr{A} be a left $\mathscr{V}\text{-}\mathsf{graded}$ category, and a let \mathscr{B} be a right $\mathscr{W}\text{-}\mathsf{graded}$ category.

Let \mathscr{A} be a left \mathscr{V} -graded category, and a let \mathscr{B} be a right \mathscr{W} -graded category. The **bigraded product** of \mathscr{A} and \mathscr{B} is the \mathscr{V} - \mathscr{W} -bigraded category $\mathscr{A} \boxtimes \mathscr{B}$ defined as follows:

(4月) キョン・(日)

Let \mathscr{A} be a left \mathscr{V} -graded category, and a let \mathscr{B} be a right \mathscr{W} -graded category. The **bigraded product** of \mathscr{A} and \mathscr{B} is the \mathscr{V} - \mathscr{W} -bigraded category $\mathscr{A} \boxtimes \mathscr{B}$ defined as follows: Firstly, $ob(\mathscr{A} \boxtimes \mathscr{B}) = ob \mathscr{A} \times ob \mathscr{B}$.

(4 同) (4 回) (4 回)

Let \mathscr{A} be a left \mathscr{V} -graded category, and a let \mathscr{B} be a right \mathscr{W} -graded category. The **bigraded product** of \mathscr{A} and \mathscr{B} is the \mathscr{V} - \mathscr{W} -bigraded category $\mathscr{A} \boxtimes \mathscr{B}$ defined as follows: Firstly, $\operatorname{ob}(\mathscr{A} \boxtimes \mathscr{B}) = \operatorname{ob} \mathscr{A} \times \operatorname{ob} \mathscr{B}$. Secondly, a graded morphism $(f,g): X, (A,B), X' \to (A',B')$ in $\mathscr{A} \boxtimes \mathscr{B}$

・ロト ・ 一 ・ ・ ヨ ・ ・ 日 ・

Let \mathscr{A} be a left \mathscr{V} -graded category, and a let \mathscr{B} be a right \mathscr{W} -graded category. The **bigraded product** of \mathscr{A} and \mathscr{B} is the \mathscr{V} - \mathscr{W} -bigraded category $\mathscr{A} \boxtimes \mathscr{B}$ defined as follows: Firstly, $\operatorname{ob}(\mathscr{A} \boxtimes \mathscr{B}) = \operatorname{ob} \mathscr{A} \times \operatorname{ob} \mathscr{B}$. Secondly, a graded morphism $(f,g): X, (A,B), X' \to (A',B')$ in $\mathscr{A} \boxtimes \mathscr{B}$ is a pair consisting of graded morphisms $f: X, A \to A'$ in \mathscr{A} and $g: B, X' \to B'$ in \mathscr{B} .

・ロト ・ 一 ・ ・ ヨ ・ ・ 日 ・

Let \mathscr{A} be a left \mathscr{V} -graded category, and a let \mathscr{B} be a right \mathscr{W} -graded category. The **bigraded product** of \mathscr{A} and \mathscr{B} is the \mathscr{V} - \mathscr{W} -bigraded category $\mathscr{A} \boxtimes \mathscr{B}$ defined as follows: Firstly, $\operatorname{ob}(\mathscr{A} \boxtimes \mathscr{B}) = \operatorname{ob} \mathscr{A} \times \operatorname{ob} \mathscr{B}$. Secondly, a graded morphism $(f,g): X, (A,B), X' \to (A',B')$ in $\mathscr{A} \boxtimes \mathscr{B}$ is a pair consisting of graded morphisms $f: X, A \to A'$ in \mathscr{A} and $g: B, X' \to B'$ in \mathscr{B} . Composition, identities, and reindexing in $\mathscr{A} \boxtimes \mathscr{B}$ are defined componentwise.

・ロト ・ 一 ・ ・ ヨ ・ ・ 日 ・

Graded bifunctors and bigraded products

Э

<ロト < 団 > < 臣 > < 臣 >

There are isomorphisms

< A ▶

There are isomorphisms

$${}_{\mathscr{V}}\mathsf{GCAT}_{\mathscr{W}}(\mathscr{A}\boxtimes\mathscr{B},\mathscr{C}) \cong {}_{\mathscr{V}}\mathsf{GBif}_{\mathscr{W}}(\mathscr{A},\mathscr{B};\mathscr{C})$$

▲ 伊 ▶ ▲ 王

There are isomorphisms

 ${}_{\mathscr{V}}\mathsf{GCAT}_{\mathscr{W}}(\mathscr{A}\boxtimes\mathscr{B},\mathscr{C})\cong{}_{\mathscr{V}}\mathsf{GBif}_{\mathscr{W}}(\mathscr{A},\mathscr{B};\mathscr{C})$

2-natural in $\mathscr{A} \in {}_{\mathscr{V}}\mathsf{GCAT}$, $\mathscr{B} \in \mathsf{GCAT}_{\mathscr{W}}$, $\mathscr{C} \in {}_{\mathscr{V}}\mathsf{GCAT}_{\mathscr{W}}$.

→ □ ▶ → 臣 ▶ → 臣 ▶

Graded functor categories and bifunctors

《口》《聞》《臣》《臣》

E

There are isomorphisms

- (目) - (日) - (日)

There are isomorphisms

$${}_{\mathscr{V}}\mathsf{GCAT}(\mathscr{A}, {}_{\mathscr{V}}[\mathscr{B}, \mathscr{C}]^{\mathscr{W}}) \cong {}_{\mathscr{V}}\mathsf{GBif}_{\mathscr{W}}(\mathscr{A}, \mathscr{B}; \mathscr{C})$$
$$\cong \mathsf{GCAT}_{\mathscr{W}}(\mathscr{B}, {}^{\mathscr{V}}[\mathscr{A}, \mathscr{C}]_{\mathscr{W}})$$

- (目) - (日) - (日)

There are isomorphisms

$$_{\mathscr{V}}\mathsf{GCAT}(\mathscr{A}, \, _{\mathscr{V}}[\mathscr{B}, \mathscr{C}]^{\mathscr{W}}) \cong _{\mathscr{V}}\mathsf{GBif}_{\mathscr{W}}(\mathscr{A}, \mathscr{B}; \mathscr{C})$$

$$\cong \mathsf{GCAT}_{\mathscr{W}}(\mathscr{B}, \, ^{\mathscr{V}}[\mathscr{A}, \mathscr{C}]_{\mathscr{W}})$$

2-natural in $\mathscr{A} \in {}_{\mathscr{V}}\mathsf{GCAT}, \mathscr{B} \in \mathsf{GCAT}_{\mathscr{W}}, \mathscr{C} \in {}_{\mathscr{V}}\mathsf{GCAT}_{\mathscr{W}}.$

・日・ ・ ヨ・・

Example: *V*-graded modules/profunctors

ŀ

Given right \mathscr{V} -graded categories \mathscr{A} and \mathscr{B} ,

Given right $\mathscr V\text{-}\mathsf{graded}$ categories $\mathscr A$ and $\mathscr B,$ equivalently, right $\hat{\mathscr V}\text{-}\mathsf{categories},$

Given right \mathscr{V} -graded categories \mathscr{A} and \mathscr{B} , equivalently, right $\widehat{\mathscr{V}}$ -categories, we can consider $\widehat{\mathscr{V}}$ -modules (or $\widehat{\mathscr{V}}$ -profunctors)

Given right \mathscr{V} -graded categories \mathscr{A} and \mathscr{B} , equivalently, right $\hat{\mathscr{V}}$ -categories, we can consider $\hat{\mathscr{V}}$ -modules (or $\hat{\mathscr{V}}$ -profunctors) $M: \mathscr{A} \longrightarrow \mathscr{B}$

- 4 同 1 4 三 1 4 三 1

Given right \mathscr{V} -graded categories \mathscr{A} and \mathscr{B} , equivalently, right $\hat{\mathscr{V}}$ -categories, we can consider $\hat{\mathscr{V}}$ -modules (or $\hat{\mathscr{V}}$ -profunctors) $M : \mathscr{A} \longrightarrow \mathscr{B}$ for the biclosed base of enrichment $\hat{\mathscr{V}}$, Given right \mathscr{V} -graded categories \mathscr{A} and \mathscr{B} , equivalently, right $\hat{\mathscr{V}}$ -categories, we can consider $\hat{\mathscr{V}}$ -modules (or $\hat{\mathscr{V}}$ -profunctors) $M : \mathscr{A} \longrightarrow \mathscr{B}$ for the biclosed base of enrichment $\hat{\mathscr{V}}$, which we call \mathscr{V} -graded modules. Given right \mathscr{V} -graded categories \mathscr{A} and \mathscr{B} , equivalently, right $\hat{\mathscr{V}}$ -categories, we can consider $\hat{\mathscr{V}}$ -modules (or $\hat{\mathscr{V}}$ -profunctors) $M : \mathscr{A} \longrightarrow \mathscr{B}$ for the biclosed base of enrichment $\hat{\mathscr{V}}$, which we call \mathscr{V} -graded modules. A \mathscr{V} -graded module $M : \mathscr{A} \longrightarrow \mathscr{B}$ Given right \mathscr{V} -graded categories \mathscr{A} and \mathscr{B} , equivalently, right $\hat{\mathscr{V}}$ -categories, we can consider $\hat{\mathscr{V}}$ -modules (or $\hat{\mathscr{V}}$ -profunctors) $M: \mathscr{A} \longrightarrow \mathscr{B}$ for the biclosed base of enrichment $\hat{\mathscr{V}}$, which we call \mathscr{V} -graded modules. A \mathscr{V} -graded module $M: \mathscr{A} \longrightarrow \mathscr{B}$ is equivalently given by a graded bifunctor $M: \mathscr{B}^{\circ}, \mathscr{A} \rightarrow \hat{\mathscr{V}}$, Given right \mathscr{V} -graded categories \mathscr{A} and \mathscr{B} , equivalently, right $\hat{\mathscr{V}}$ -categories, we can consider $\hat{\mathscr{V}}$ -**modules** (or $\hat{\mathscr{V}}$ -**profunctors**) $M: \mathscr{A} \longrightarrow \mathscr{B}$ for the biclosed base of enrichment $\hat{\mathscr{V}}$, which we call \mathscr{V} -**graded modules**. A \mathscr{V} -graded module $M: \mathscr{A} \longrightarrow \mathscr{B}$ is equivalently given by a graded bifunctor $M: \mathscr{B}^{\circ}, \mathscr{A} \rightarrow \hat{\mathscr{V}}$, or equivalently, a \mathscr{V} - \mathscr{V} -bigraded functor $M: \mathscr{B}^{\circ} \boxtimes \mathscr{A} \rightarrow \hat{\mathscr{V}}$.