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Section 1

Random Variables
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Random variables

Let’s desugar the following statement

“Let X ,Y be independent standard normal variables, then P(X ≥ Y ) = 1
2
”

1 There exists a sample space (Ω,Σ,P) and two measurable functions

X ,Y : (Ω,Σ)→ (R,B)

2 The laws PX (A) = P(X−1(A)),PY (A) = P(Y−1(A)) satisfy

PX (A) = PY (A) =
1
√
2π

∫
A
e−

1
2
x2dx

3 Independence

P({ω : X (ω) ∈ A,Y (ω) ∈ B}) = PX (A) · PY (B)

4 Then conclude that P({ω : X (ω) ≥ Y (ω)}) = 1
2
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Random variables

What’s nice about random variables?

1 Can be manipulated like values

2 measures are constructed implicitly by pushforward

3 close connection with functional analysis [Lp(Ω,Σ,P)]

4 X = Y equality almost surely

5 conditional expectation

6 dependence on Ω implicit
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Random variables

What’s awkward about random variables?

1 dependence on Ω implicit

2 type-safety: E[(X − E[X ])2], E[X |Y = y ], E[X |Y ], . . .

3 constructing explicit distributions

4 X
d
= Y equality in distribution

5 conditional distributions

Questions [Tao]

1 What is the formal status of the sample space (Ω,Σ,P)?

2 How can we silently enlarge it (allocate new random variables)?

3 How to make sure everything stays consistent?
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A Convenient Setting for Random Variables

Convenient Setting

Can we find a typed setting which

1 needs no explicit tracking of measurability or sample spaces

2 faithfully includes standard Borel spaces X

3 has an object RV(X ) of random variables valued in X

4 allows reasoning by higher-order logic?
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A Convenient Setting for Random Variables

Some desiderata

1 (X → Y )→ (RV(X )→ RV(Y ))

2 RV(X × Y ) ∼= RV(X )× RV(Y )

3 Law : RV(X )→ G(X ) ← Giry monad

4 (⊥) ⊆ RV(X )× RV(Y )

5 (∼) ⊆ RV(X )× G(X )

6 E : RV([0, 1])→ [0, 1]

7 E[−|−] : RV([0, 1])× RV(X )→ RV([0, 1])

8 ∀F : RV(X )∀µ : G(Y )∃G : RV(Y ) : G ∼ µ ∧ G⊥F
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A Convenient Setting for Random Variables

Convenient Setting

Can we find a typed setting which

1 needs no explicit tracking of measurability or sample spaces

2 faithfully includes standard Borel spaces X

3 has an object RV(X ) of random variables valued in X

4 allows reasoning by higher-order logic?

[Simpson’17] There is a boolean topos satisfying these desiderata, namely Probability
Sheaves
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Probability Sheaves
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Probability Sheaves

Definition

Let SBP be the category of standard Borel sample spaces

1 objects are standard Borel probability spaces Ω = (X ,Σ,P)

2 morphisms (X ,ΣX ,P)→ (Y ,ΣY ,Q) are equivalence classes [f ]P of
measure-preserving measurable functions

(X ,ΣX )→ (Y ,ΣY ), f∗P = Q

up to p-almost sure equality.

Interpretation: Morphisms π : Ω′ → Ω are projections or coarse-grainings, e.g.

1 (X × Y ,ΣX×Y ,P)→ (X ,ΣX ,PX )

2 (X ,F ,P)→ (X , E,P|E) where E ⊆ F
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Probability Sheaves

Definition

A probability presheaf is a functor F : SBPop → Set.

Idea: Every element X ∈ F (Ω) can be extended along Ω′ π−→ Ω to X · π ∈ F (Ω′).

Definition

For every standard Borel space V , we have a presheaf RV(V ) : SBPop → Set with

RV(V )(Ω, p) = {X : Ω→ V measurable }/p-a.s.

The extension action is (Ω
X−→ V ) · (Ω′ π−→ Ω) = X ◦ π.

Proposition

RV defines a cartesian functor Sbs→ [SBPop,Set].

1 RV(V
f−→W )Ω : (Ω

X−→ V ) 7→ f ◦ X
2 the desired operations are equivariant (natural transformations), e.g.

Law : RV(V )→ ∆G(V ), (Ω
X−→ V ) 7→ X∗pΩ
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Probability Sheaves

Theorem

Each presheaf RV(V ) is a sheaf for the atomic topology on SBP.

Given π : Ω′ → Ω,

1 X · π = Y · π ⇒ X = Y

2 X ′ ∈ RV(V )(Ω′) descends to X ∈ RV(V )(Ω) iff X ′ is π-invariant, i.e.

∀ρ1, ρ2, π ◦ ρ1 = π ◦ ρ2 ⇒ X ′ · ρ1 = X ′ · ρ2

What’s the deeper meaning of the atomic sheaf property?
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Sheaves and Conditional Independence

Definition (Independent Square)

We call a commutative square in SBP independent

Ω′ Ω1

⊥⊥

Ω2 Ω

f1

f2 g1

g2

if f1 and f2 are conditionally independent given g1f1 (= g2f2). ← regular conditional probabilities

Theorem (Simpson)

TFAE for a presheaf F : SBPop → Set

1 F is a sheaf for the atomic topology on SBP
2 F sends independent squares in SBP to pullback squares in Set
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Probability Sheaves

Summary Section I: The random variable formalism lives in atomic sheaves over
sample spaces.

We want to: Generalize the situation, and understand what makes it work.

Borel Probability Markov Categories

Probability Sheaves Generalized Probability Sheaves

generalize

Alex Simpson Section 2
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Section 2

Markov Categories and Sample Spaces
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Markov categories

Markov categories [Fritz’20]

Markov categories (C,⊗, I , copy,del) are an axiomatization of stochastic maps
(Markov kernels)

deletecopy

f =

normalization
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Markov categories: Examples

FinStoch (discrete probability)

Finite sets X , and stochastic matrices p(y |x) (Kleisli maps X → D(Y ))

BorelStoch (Borel probability)

Standard Borel spaces (X ,ΣX ) and Markov kernels (Kleisli maps
(X ,ΣX )→ G(Y ,ΣY ))

Gauss (Gaussian probability)

Euclidean spaces Rn, and affine-linear maps with Gaussian noise f (x) = Ax +N (µ,Σ)

SetMulti (nondeterminism)

Sets X , and left-total relations R ⊆ X × Y (Kleisli maps X → P⊃∅(Y ))

StrongName (fresh name generation)

Strong nominal sets X , and name-generating equivariant functions (Kleisli maps
X → N(Y )); e.g. f (a) = ⟨⟩a, g(a) = ⟨b⟩b.
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Markov categories

Many probabilistic concepts can be captured precisely in the language of Markov
categories:

f

f f

=

p

f

p

g

=

f deterministic f = g p-almost surely Bayesian inversion

p

f

=

p

f †p

f
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Probability- and Sample Spaces

Let C be a Markov category with conditionals.

Definition

A probability space is a pair (X , p) with p : I → X . A morphism (X , p)→ (Y , q)

in P(C) is [f ]p : X → Y with fp = q

in S(C) is [f ]p : X → Y with fp = q and f is p-a.s. deterministic

f

p p

f f

=
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Classifying Sample Spaces

We wish to understand S(C) in our examples:

Definition (Simplifying assumption)

Call a sample space (X , p) faithful if f =p g ⇔ f = g . ← forget about a.s. equality

Theorem

The following are equivalent

1 (X , p) is isomorphic in P(C) to a faithful sample space (S , σ)

2 (X , p) is isomorphic in S(C) to a faithful sample space (S , σ)

3 (S , σ) is a split support for p.

In all examples except BorelStoch, every sample space is isomorphic to a faithful one.

Dario Stein

Independence and Dilations



Random Variables Markov Categories and Sample Spaces Independence Structures

Probability

P(FinStoch) is equivalent to the category of couplings

objects are (X , p) with p(x) > 0

morphisms (X , pX )→ (Y , pY ) are joint distribution p(x , y) with p1(x) = pX (x),
p2(y) = pY (y).

S(FinStoch) is equivalent to FinRV

objects are (X , p) with p(x) > 0

morphisms (X , p)→ (Y , q) are surjective functions f with

q(y) =
∑

x∈f−1(y)

p(x)
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Relations

P(SetMulti) is equivalent to

objects are sets X

morphisms are bi-total relations R ⊆ X × Y

S(SetMulti) is equivalent to Surj

objects are sets X

morphisms are surjective functions
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Gaussian Probability

P(Gauss) is equivalent to Con

objects are euclidean spaces Rn

morphisms are matrices A ∈ Rn×m with ||Ax || ≤ ||x || (contractions)!

S(Gauss) is equivalent to CoIso

objects are euclidean spaces Rn

morphisms are A ∈ Rn×m with AAT = In.
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Name Generation

S(StrongName) is equivalent to FinInjop

objects are finite sets n

morphisms m→ n are injections n→ m

Nom(A#m,A#n) ∼= Inj(n,m)
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Conditional independence

Definition

We call a commutative square in S(C)

(Ω′, p) (Ω1, q1)

(Ω2, q2) (Ω, r)

f1

f2
h g1

g2

independent if f1⊥f2 | h, i.e.

p

f1 h f2

p

g†
1 g†

2

h
=
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Probability- and Sample Spaces

Can we develop a theory of probability sheaves for S(C)?
1 Yes, Simpson postulated axioms (IP1)-(IP5) which can be verified by hand

([Stein, LICS’25])
2 more elegant route: let’s understand the relationship between S(C) and P(C)

using categorical logic

Some Properties [Perrone & al]

1 P(C) and S(C) are both semicartesian monoidal (not Markov!)

2 Bayesian inversion is a dagger functor on P(C)

(X , p) (Y , q)
f

f †

3 f p-a.s. deterministic ⇔ f ◦ f † = id (†-coisometry!)

4 That is S(C) = CoIsom(P(C)).

Idea: If P has a nice enough †-structure, then CoIsom(P) has a nice independence
structure.

Dario Stein

Independence and Dilations



Random Variables Markov Categories and Sample Spaces Independence Structures

Section 3

Independence Structures
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Quick Recap

Classic story

locally regular categories ↔ tabular allegories

New story

epiregular independence categories ↔ dilar †-categories
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Regular Categories and Allegories

Rel-construction

Every locally regular category C has a category of relations Rel(C).
1 same objects as C

2 morphisms are equivalence classes of jointly monic spans [f
f←− Ω

g−→ Y ]

3 composition by pullback, followed by image factorization

Question: How to characterize the categories Rel(C), and recover C from them?
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Regular Categories and Allegories

Allegory

An allegory is a poset-enriched †-category R where each hom-set carries a lattice
structure R ∩ S , satisfying the modular law.

1 a map f : X → Y satisfies 1 ⊆ f †f (left-total) and ff † ⊆ 1 (subfunctional).

2 a tabulation of R is a span of maps [f , g ] with gf † = R

3 a tabulator is a tabulation satisfying f †f ∩ g†g = 1 (think joint monicity)

A tabular allegory is one where every morphism has a tabulator.

A correspondence

1 For every locally regular category C, Rel(C) is a tabular allegory

2 For every tabular allegory R, Map(R) is a locally regular category

3 we have a 2-equivalence

LocReg TabAll

Rel

Map
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Our Solution

For intuitions, keep in mind the following dictionary

Allegories Our story
map coisometry

tabulation dilation
tabulator dilator
pullback independent pullback

Theorem

1 For every dilar †-category P, CoIsom(P) is an epiregular independence category

2 For every epiregular independence category S, Rel(S) is a dilar †-category
3 We have a 2-equivalence

EpiRegInd DilDag

Rel

CoIsom
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Dilar †-categories

Definition

In a †-category P, we say f : X → Y is

1 a coisometry if ff † = 1 (†-epi)
2 an isometry if f †f = 1 (†-mono)

A dilation of R : X → Y is a span of coisometries with R = gf †. A dilator is a
terminal dilation

Ω

X ⊞R Y

X Y

∃!
f g

p1 p2

R

We say P is dilar if every morphism has a dilator.
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Dilar †-categories

Proposition

If C is a Markov category with conditionals, then P(C) is a dilar †-category. The
dilator of f : (X , p)→ (Y , q) is given by the span

(X , p)
π1←−− (X ⊗ Y , ρ)

π2−−→ (Y , q)

where

f

p

ρ =

Dario Stein
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Independence Structures

Theorem

For any †-category P, CoIsom(P) carries an independence structure

• •

• •

f

g u

v

⊣ :⇔ fg† = u†v

Examples:

1 in Hilbert spaces: relative orthogonality

2 in S(C): conditional independence!

If P has dilators, this should make the independence structure extra nice . . .
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Independence Structures

Definition [Alex Simpson’18, ∼]

An independence category is equipped with a predicate ⊥ on commuting squares s.t

(i)

• •

• •

1

f f

1

⊣

(ii)

• •

• •

a

f g

s

⊣ and

• •

• •

b

g h

t

⊣ implies

• • •

• • •

a

f

b

⊣
h

s t

(iii)

• •

• •

f

g u

v

⊣ implies

• •

• •

g

f v

u

⊣

(iv)

• •

• •

f

f 1

1

⊣

← (iv) not self-dual: independence ⊥ vs co-independence ⊤
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Independence Structures

Definition [Alex Simpson’18, ∼]

An independence category is equipped with a predicate ⊥ on commuting squares s.t

(i)

• •

• •

1

f f

1

⊣

(ii)

• •

• •

a

f g

s

⊣ and

• •

• •

b

g h

t

⊣ implies

• • •

• • •

a

f

b

⊣
h

s t

(iii)

• •

• •

f

g u

v

⊣ implies

• •

• •

g

f v

u

⊣

(iv)

• •

• •

f

f 1

1

⊣ ← (iv) not self-dual: independence ⊥ vs co-independence ⊤
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Independent Pullback

Definition [Simpson]

In an independence category (S,⊥), an independent pullback is terminal among
independent squares.

•

• •

• •

∃!
p1

p2 u

v

⊣

⊣
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Epiregular independence category

Definition

An independence category (S,⊥) is epiregular if

1 every morphism is strong epi (orthogonal to jointly monic spans)

2 every span has a (strong epi, jointly mono)-factorization

3 every span completes to an independent pullback

Theorem

For every dilar †-category P, CoIsom(P) is an epiregular independence category.

Idea: a span of coisometries [f , g ] is jointly monic iff it is a dilator of gf †.

X ⊞ϕ Y Y

X Z

p1

p2 u
ϕ=u†v

v

is an independent pullback
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Back and Forth

Definition

For an epiregular independence category (S,⊥), define Rel(S,⊥) as usual, but
compose by independent pullback.

Main Theorem

For every epiregular independence category (S,⊥), Rel(S,⊥) is a dilar †-category, and
we have a 2-equivalence

EpiRegInd DilDag

Rel

CoIsom
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Examples: Surjections

Conditional variation independence

A commuting square of surjections

Ω X

Y Z

f

g u

v

⊣
is independent if for all x ∈ X , y ∈ Y with u(x) = v(y), there exists ω ∈ Ω with
f (ω) = x , g(ω) = y .

Here, independence ⇔ weak pullback in Set (but not in Surj).
Independent pullback is the pullback in Set.
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Examples: Injections

Relative disjointness

A commuting square of injections is co-independent

A B

C D

f

g d
i

j

if im(i) ∩ im(j) = im(d).

Injop is an epiregular independence category.

In separation logic, think of Inj as heap layouts. Independence pushouts are
Set-pushouts, and have been used in the semantic of local state [Kammar&al,LICS’17]
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Examples: Isometries of Hilbert spaces

Relative Orthogonality

A bounded linear map f between Hilbert spaces is an isometry if ||fx || = ||x ||. A
commuting square of isometries is co-independent if

A B

C D

f

g i

j

⊣ :⇔ i∗j = fg∗

Isomop ∼= CoIsom is an epiregular independence category (essentially by Sz.-Nagy’s
dilation theorem).
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To summarize

We can extended the regular category/allegory 2-equivalence to a 2-equivalence

EpiRegInd DilDag

Rel

CoIsom

under which S(C) and P(C) recover each other. A theory of probability sheaves can be
developed for any epiregular independence category S.

S(C) P(C) C
FinRV Coupl FinStoch
SBP BorelCoupl BorelStoch
Surj TotRel SetMulti

Isomop Con Gauss
Injop pInj StrongName
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Outlook

Outlook

1 let E be the topos of atomic sheaves on S
2 the inclusion J : S→ P = Rel(S) induces an adjunction

[Sop,Set] [Pop,Set]

ΣJ

∆J

⊣

whose monad restricts toM : E → E and is commutative and affine

3 the Kleisli category Kl(M) is a Markov category

4 if S = S(C), then C→ Kl(M) a Markov embedding.

Application in Computer Science: “A Nominal Approach to Probabilistic Separation
Logic” [Li&al, LICS’24] (Lilac), “A Monad for Full Ground Reference
Cells”[Kammar&al, LLICS’17]
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Appendix

The 2-category DilDag consists of

0. dilar †-categories
1. functors preserving daggers and dilators

2. natural coisometries

The 2-category EpiRegInd consists of

0. epiregular independence categories

1. functors preserving independent squares

2. natural transformations with independent naturality squares
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