Markov Categories and Sample Spaces

Random Variables, Independence Structures and Dagger Categories of Relations

Dario Stein, Radboud University Nijmegen

joint work with Chris Heunen $^1,\,\rm Matthew$ Di Meglio $^1,\,\rm Paolo\,\,Perrone^2$

¹ University of Edinburgh, ² University of Oxford

Topos Institute Colloqium - 22 May 2025

▲ロト ▲聞 ト ▲ 臣 ト ▲ 臣 ト ○ 臣 - のへで

Outline

Section 1 - Model

Random Variables and Probability Sheaves

Section 2 – Generalize

Markov categories \mathbb{C} , probability spaces $\mathbb{P}(\mathbb{C})$, sample spaces $\mathbb{S}(\mathbb{C})$ Examples: isometries, nondeterminism, fresh name generation

Section 3 - Understand

What's the relationship between the categories \mathbb{P} and \mathbb{S} ? Generalizing the regular category \leftrightarrow tabular allegory equivalence

Section 1

Random Variables

Dario Stein

Independence and Dilations

Random variables

Let's desugar the following statement

"Let X, Y be independent standard normal variables, then $P(X \ge Y) = \frac{1}{2}$ "

I There exists a sample space $(\Omega, \Sigma, \mathsf{P})$ and two measurable functions

$$X, Y: (\Omega, \Sigma)
ightarrow (\mathbb{R}, \mathcal{B})$$

2 The laws $P_X(A) = P(X^{-1}(A)), P_Y(A) = P(Y^{-1}(A))$ satisfy

$$P_X(A) = P_Y(A) = \frac{1}{\sqrt{2\pi}} \int_A e^{-\frac{1}{2}x^2} \mathrm{d}x$$

Independence

$$P(\{\omega: X(\omega) \in A, Y(\omega) \in B\}) = P_X(A) \cdot P_Y(B)$$

4 Then conclude that $P(\{\omega : X(\omega) \ge Y(\omega)\}) = \frac{1}{2}$

Random variables

What's nice about random variables?

- 1 Can be manipulated like values
- 2 measures are constructed implicitly by pushforward
- **3** close connection with functional analysis $[L^p(\Omega, \Sigma, P)]$
- 4 X = Y equality almost surely
- 5 conditional expectation
- **6** dependence on Ω implicit

Random variables

What's awkward about random variables?

- **1** dependence on Ω implicit
- 2 type-safety: $\mathbb{E}[(X \mathbb{E}[X])^2]$, $\mathbb{E}[X|Y = y]$, $\mathbb{E}[X|Y]$, ...
- constructing explicit distributions
- $X \stackrel{d}{=} Y$ equality in distribution
- 5 conditional distributions

Questions [Tao]

- **1** What is the formal status of the sample space (Ω, Σ, P) ?
- 2 How can we silently enlarge it (allocate new random variables)?
- How to make sure everything stays consistent?

A Convenient Setting for Random Variables

Convenient Setting

Can we find a typed setting which

- needs no explicit tracking of measurability or sample spaces
- 2 faithfully includes standard Borel spaces X
- **B** has an object RV(X) of random variables valued in X
- allows reasoning by higher-order logic?

A Convenient Setting for Random Variables

Some desiderata

- $\blacksquare (X \to Y) \to (\mathsf{RV}(X) \to \mathsf{RV}(Y))$
- **2** $\mathsf{RV}(X \times Y) \cong \mathsf{RV}(X) \times \mathsf{RV}(Y)$
- 3 Law : $\mathsf{RV}(X) \to \mathcal{G}(X) \leftarrow \mathsf{Giry monad}$
- $(\bot) \subseteq \mathsf{RV}(X) \times \mathsf{RV}(Y)$
- $(\sim) \subseteq \mathsf{RV}(X) \times \mathcal{G}(X)$
- $\textbf{\textbf{6}}~\mathbb{E}:\mathsf{RV}([0,1])\to [0,1]$
- $\mathbb{Z} \mathbb{E}[-|-] : \mathsf{RV}([0,1]) \times \mathsf{RV}(X) \to \mathsf{RV}([0,1])$
- $\forall F : \mathsf{RV}(X) \forall \mu : \mathcal{G}(Y) \exists G : \mathsf{RV}(Y) : G \sim \mu \land G \bot F$

A Convenient Setting for Random Variables

Convenient Setting

Can we find a typed setting which

- needs no explicit tracking of measurability or sample spaces
- 2 faithfully includes standard Borel spaces X
- **B** has an object RV(X) of random variables valued in X
- allows reasoning by higher-order logic?

 $[{\rm Simpson'17}]$ There is a boolean topos satisfying these desiderata, namely ${\bf Probability}$ ${\bf Sheaves}$

Dario Stein

Independence and Dilations

Definition

Let \mathbb{SBP} be the category of standard Borel sample spaces

- **1** objects are standard Borel probability spaces $\Omega = (X, \Sigma, P)$
- 2 morphisms $(X, \Sigma_X, P) \rightarrow (Y, \Sigma_Y, Q)$ are equivalence classes $[f]_P$ of measure-preserving measurable functions

$$(X, \Sigma_X) \rightarrow (Y, \Sigma_Y), f_*P = Q$$

up to *p*-almost sure equality.

Interpretation: Morphisms $\pi: \Omega' \to \Omega$ are projections or coarse-grainings, e.g.

$$\begin{array}{l} \blacksquare \ (X \times Y, \Sigma_{X \times Y}, P) \to (X, \Sigma_X, P_X) \\ \blacksquare \ (X, \mathcal{F}, P) \to (X, \mathcal{E}, P|_{\mathcal{E}}) \text{ where } \mathcal{E} \subseteq \mathcal{F} \end{array}$$

Definition

A probability presheaf is a functor $F : \mathbb{SBP}^{op} \to \mathbf{Set}$.

Idea: Every element $X \in F(\Omega)$ can be extended along $\Omega' \xrightarrow{\pi} \Omega$ to $X \cdot \pi \in F(\Omega')$.

Definition

For every standard Borel space V, we have a presheaf RV(V) : $SBP^{op} \rightarrow Set$ with

 $\mathsf{RV}(V)(\Omega, p) = \{X : \Omega \to V \text{ measurable }\}/p-a.s.$

The extension action is $(\Omega \xrightarrow{X} V) \cdot (\Omega' \xrightarrow{\pi} \Omega) = X \circ \pi$.

Proposition

RV defines a cartesian functor $\mathbf{Sbs} \rightarrow [\mathbb{SBP}^{op}, \mathbf{Set}]$.

1
$$\mathsf{RV}(V \xrightarrow{f} W)_{\Omega} : (\Omega \xrightarrow{X} V) \mapsto f \circ X$$

2 the desired operations are equivariant (natural transformations), e.g.

$$\operatorname{Law}: \mathsf{RV}(V) \to \Delta \mathcal{G}(V), (\Omega \xrightarrow{X} V) \mapsto X_* p_{\Omega}$$

Theorem

Each presheaf RV(V) is a sheaf for the atomic topology on SBP.

Given $\pi: \Omega' \to \Omega$,

$$X \cdot \pi = Y \cdot \pi \Rightarrow X = Y$$

2 $X' \in \mathsf{RV}(V)(\Omega')$ descends to $X \in \mathsf{RV}(V)(\Omega)$ iff X' is π -invariant, i.e.

$$\forall \rho_1, \rho_2, \pi \circ \rho_1 = \pi \circ \rho_2 \Rightarrow X' \cdot \rho_1 = X' \cdot \rho_2$$

What's the deeper meaning of the atomic sheaf property?

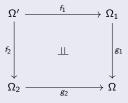
E

イロト イヨト イヨト イヨト

Sheaves and Conditional Independence

Definition (Independent Square)

We call a commutative square in \mathbb{SBP} independent



if f_1 and f_2 are conditionally independent given g_1f_1 (= g_2f_2). \leftarrow regular conditional probabilities

Theorem (Simpson)

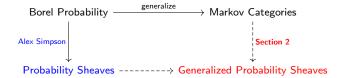
TFAE for a presheaf $F:\mathbb{SBP}^{op}\to \mathbf{Set}$

- **1** F is a sheaf for the **atomic topology** on SBP
- **2** F sends independent squares in SBP to pullback squares in Set

Dario Stein

Summary Section I: The random variable formalism lives in atomic sheaves over sample spaces.

We want to: Generalize the situation, and understand what makes it work.



Э

イロト イヨト イヨト イヨト

Section 2

Markov Categories and Sample Spaces

Dario Stein

Markov categories

Markov categories [Fritz'20]

Markov categories ($\mathbb{C}, \otimes, I, \operatorname{copy}, \operatorname{del}$) are an axiomatization of stochastic maps (Markov kernels)

Markov categories: Examples

FinStoch (discrete probability)

Finite sets X, and stochastic matrices p(y|x) (Kleisli maps $X \to D(Y)$)

BorelStoch (Borel probability)

Standard Borel spaces (X, Σ_X) and Markov kernels (Kleisli maps $(X, \Sigma_X) \to \mathcal{G}(Y, \Sigma_Y)$)

Gauss (Gaussian probability)

Euclidean spaces \mathbb{R}^n , and affine-linear maps with Gaussian noise $f(x) = Ax + \mathcal{N}(\mu, \Sigma)$

SetMulti (nondeterminism)

Sets X, and left-total relations $R \subseteq X \times Y$ (Kleisli maps $X \to \mathcal{P}_{\supset \emptyset}(Y)$)

StrongName (fresh name generation)

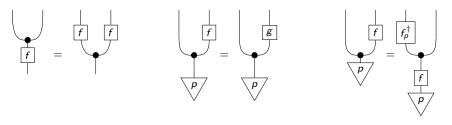
Strong nominal sets X, and name-generating equivariant functions (Kleisli maps $X \to N(Y)$); e.g. $f(a) = \langle \rangle a, g(a) = \langle b \rangle b$.

Dario Stein

Markov Categories and Sample Spaces

Markov categories

Many probabilistic concepts can be captured precisely in the language of Markov categories:



f deterministic

f = g p-almost surely

Bayesian inversion

Probability- and Sample Spaces

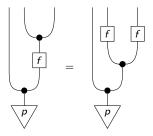
Let $\ensuremath{\mathbb{C}}$ be a Markov category with conditionals.

Definition

A probability space is a pair (X, p) with $p : I \to X$. A morphism $(X, p) \to (Y, q)$

• in
$$\mathbb{P}(\mathbb{C})$$
 is $[f]_p : X \to Y$ with $fp = q$

• in $\mathbb{S}(\mathbb{C})$ is $[f]_p : X \to Y$ with fp = q and f is *p*-a.s. deterministic



Classifying Sample Spaces

We wish to understand $\mathbb{S}(\mathbb{C})$ in our examples:

Definition (Simplifying assumption)

Call a sample space (X, p) faithful if $f =_p g \Leftrightarrow f = g$. \leftarrow forget about a.s. equality

Theorem

The following are equivalent

- **1** (X, p) is isomorphic in $\mathbb{P}(\mathbb{C})$ to a faithful sample space (S, σ)
- **2** (X, p) is isomorphic in $\mathbb{S}(\mathbb{C})$ to a faithful sample space (S, σ)
- **3** (S, σ) is a split support for p.

In all examples except BorelStoch, every sample space is isomorphic to a faithful one.

Probability

 $\mathbb{P}(\textbf{FinStoch})$ is equivalent to the category of couplings

- objects are (X, p) with p(x) > 0
- morphisms $(X, p_X) \rightarrow (Y, p_Y)$ are joint distribution p(x, y) with $p_1(x) = p_X(x)$, $p_2(y) = p_Y(y)$.

S(FinStoch) is equivalent to FinRV

- objects are (X, p) with p(x) > 0
- morphisms $(X, p) \rightarrow (Y, q)$ are surjective functions f with

$$q(y) = \sum_{x \in f^{-1}(y)} p(x)$$

▲ロト▲御ト▲臣ト▲臣ト 臣 のへで

Relations

- $\mathbb{P}($ **SetMulti**) is equivalent to
 - objects are sets X
 - morphisms are bi-total relations $R \subseteq X \times Y$
- S(SetMulti) is equivalent to Surj
 - objects are sets X
 - morphisms are surjective functions

Gaussian Probability

- $\mathbb{P}(\textbf{Gauss})$ is equivalent to Con
 - objects are euclidean spaces \mathbb{R}^n
 - morphisms are matrices $A \in \mathbb{R}^{n \times m}$ with $||Ax|| \leq ||x||$ (contractions)!
- $\mathbb{S}(\textbf{Gauss})$ is equivalent to Colso
 - objects are euclidean spaces \mathbb{R}^n
 - morphisms are $A \in \mathbb{R}^{n \times m}$ with $AA^T = I_n$.

Name Generation

$\mathbb{S}(StrongName)$ is equivalent to FinInj^{op}

- objects are finite sets n
- morphisms $m \rightarrow n$ are injections $n \rightarrow m$

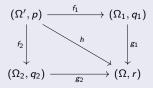
 $\mathsf{Nom}(\mathbb{A}^{\#m},\mathbb{A}^{\#n})\cong\mathsf{Inj}(n,m)$

▲ロト ▲母 ▶ ▲臣 ▶ ▲臣 ▶ ● 日 ● ● ●

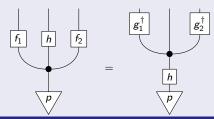
Conditional independence

Definition

We call a commutative square in $\mathbb{S}(\mathbb{C})$



independent if $f_1 \perp f_2 \mid h$, i.e.



Dario Stein

Independence and Dilations

うくで

Probability- and Sample Spaces

Can we develop a theory of probability sheaves for $\mathbb{S}(\mathbb{C})$?

Yes, Simpson postulated axioms (IP1)-(IP5) which can be verified by hand ([Stein, LICS'25])

2 more elegant route: let's understand the relationship between $\mathbb{S}(\mathbb{C})$ and $\mathbb{P}(\mathbb{C})$ using categorical logic

Some Properties [Perrone & al]

I $\mathbb{P}(\mathbb{C})$ and $\mathbb{S}(\mathbb{C})$ are both semicartesian monoidal (not Markov!)

2 Bayesian inversion is a dagger functor on $\mathbb{P}(\mathbb{C})$

$$(X,p) \xrightarrow{f} (Y,q)$$

3 *f* p-a.s. deterministic \Leftrightarrow *f* \circ *f*[†] = id (†-coisometry!)

4 That is $\mathbb{S}(\mathbb{C}) = \operatorname{CoIsom}(\mathbb{P}(\mathbb{C}))$.

Idea: If \mathbb{P} has a nice enough \dagger -structure, then $CoIsom(\mathbb{P})$ has a nice independence structure.

Dario Stein

・ロト ・ 四ト ・ ヨト ・ ヨト

Э

Section 3

Independence Structures

Dario Stein

Classic story

locally regular categories \leftrightarrow tabular allegories

New story

epiregular independence categories \leftrightarrow dilar \dagger -categories

Dario Stein

Regular Categories and Allegories

Rel-construction

Every locally regular category \mathbb{C} has a category of relations $\operatorname{Rel}(\mathbb{C})$.

- **I** same objects as \mathbb{C}
- **2** morphisms are equivalence classes of jointly monic spans $[f \xleftarrow{f} \Omega \xrightarrow{g} Y]$
- composition by pullback, followed by image factorization

Question: How to characterize the categories $Rel(\mathbb{C})$, and recover \mathbb{C} from them?

Regular Categories and Allegories

Allegory

An **allegory** is a poset-enriched \dagger -category \mathbb{R} where each hom-set carries a lattice structure $R \cap S$, satisfying the modular law.

- **I** a map $f : X \to Y$ satisfies $1 \subseteq f^{\dagger}f$ (left-total) and $ff^{\dagger} \subseteq 1$ (subfunctional).
- **2** a **tabulation** of *R* is a span of maps [f, g] with $gf^{\dagger} = R$
- **B** a **tabulator** is a tabulation satisfying $f^{\dagger}f \cap g^{\dagger}g = 1$ (think joint monicity)

A tabular allegory is one where every morphism has a tabulator.

A correspondence

- **I** For every locally regular category \mathbb{C} , $\operatorname{Rel}(\mathbb{C})$ is a tabular allegory
- **2** For every tabular allegory \mathbb{R} , $Map(\mathbb{R})$ is a locally regular category
- 3 we have a 2-equivalence

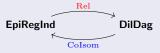
Our Solution

For intuitions, keep in mind the following dictionary

Allegories	Our story
map	coisometry
tabulation	dilation
tabulator	dilator
pullback	independent pullback

Theorem

- **I** For every dilar \dagger -category \mathbb{P} , CoIsom(\mathbb{P}) is an epiregular independence category
- For every epiregular independence category S, Rel(S) is a dilar †-category
- 3 We have a 2-equivalence



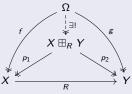
◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 - シペ⊙

Dilar †-categories

Definition

- In a \dagger -category \mathbb{P} , we say $f: X \to Y$ is
 - 1 a coisometry if $ff^{\dagger} = 1$ (†-epi)
 - **2** an **isometry** if $f^{\dagger}f = 1$ (\dagger -mono)

A dilation of $R: X \to Y$ is a span of coisometries with $R = gf^{\dagger}$. A dilator is a terminal dilation



We say \mathbb{P} is **dilar** if every morphism has a dilator.

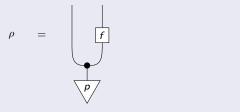
Dilar †-categories

Proposition

If \mathbb{C} is a Markov category with conditionals, then $\mathbb{P}(\mathbb{C})$ is a dilar †-category. The dilator of $f: (X, p) \to (Y, q)$ is given by the span

$$(X,p) \xleftarrow{\pi_1} (X \otimes Y, \rho) \xrightarrow{\pi_2} (Y,q)$$

where



Independence Structures

Theorem

For any \dagger -category \mathbb{P} , $\operatorname{CoIsom}(\mathbb{P})$ carries an independence structure

$$\begin{array}{c} \bullet & \stackrel{f}{\longrightarrow} \bullet \\ g \downarrow & \bot & \downarrow u \\ \bullet & \stackrel{V}{\longrightarrow} \bullet \end{array} : \Leftrightarrow \quad fg^{\dagger} = u^{\dagger}v$$

Examples:

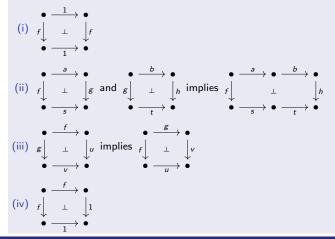
- 1 in Hilbert spaces: relative orthogonality
- **2** in $\mathbb{S}(\mathbb{C})$: conditional independence!

If $\mathbb P$ has dilators, this should make the independence structure extra nice \ldots

Independence Structures

Definition [Alex Simpson'18, \sim]

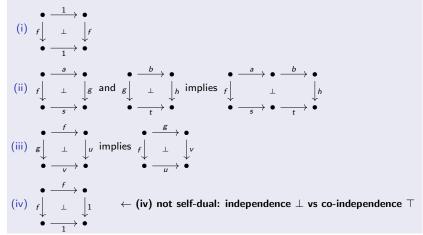
An independence category is equipped with a predicate \perp on commuting squares s.t



Independence Structures

Definition [Alex Simpson'18, \sim]

An independence category is equipped with a predicate \perp on commuting squares s.t



Dario Stein

Independent Pullback

Definition [Simpson]

In an independence category (§, \perp), an **independent pullback** is terminal among independent squares.

Epiregular independence category

Definition

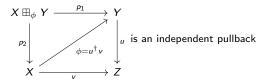
An independence category (\mathbb{S}, \bot) is epiregular if

- every morphism is strong epi (orthogonal to jointly monic spans)
- 2 every span has a (strong epi, jointly mono)-factorization
- 3 every span completes to an independent pullback

Theorem

For every dilar \dagger -category \mathbb{P} , $CoIsom(\mathbb{P})$ is an epiregular independence category.

Idea: a span of coisometries [f, g] is jointly monic iff it is a dilator of gf^{\dagger} .



Back and Forth

Definition

For an epiregular independence category (S, \bot) , define $\text{Rel}(S, \bot)$ as usual, but compose by **independent pullback**.

Main Theorem

For every epiregular independence category (S, \perp), Rel(S, \perp) is a dilar †-category, and we have a 2-equivalence

Examples: Surjections

Conditional variation independence

A commuting square of surjections

is independent if for all $x \in X$, $y \in Y$ with u(x) = v(y), there exists $\omega \in \Omega$ with $f(\omega) = x$, $g(\omega) = y$.

Here, independence \Leftrightarrow weak pullback in **Set** (but not in Surj). Independent pullback is the pullback in **Set**.

Examples: Injections

Relative disjointness

A commuting square of injections is co-independent

if $\operatorname{im}(i) \cap \operatorname{im}(j) = \operatorname{im}(d)$.

Inj^{op} is an epiregular independence category.

In separation logic, think of Inj as heap layouts. Independence pushouts are **Set**-pushouts, and have been used in the semantic of local state [Kammar&al,LICS'17]

Examples: Isometries of Hilbert spaces

Relative Orthogonality

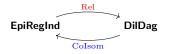
A bounded linear map f between Hilbert spaces is an isometry if ||fx|| = ||x||. A commuting square of isometries is co-independent if

$$\begin{array}{c|c} A & & \overbrace{f} & B \\ g \\ \downarrow & & \downarrow_{i} \\ C & & \downarrow_{j} \\ \end{array} \begin{array}{c} \vdots & \vdots & \vdots & i^{*}j = fg^{*} \\ \vdots & \vdots & \vdots \\ D \end{array}$$

 $\underline{Isom^{op}}\cong \underline{CoIsom}$ is an epiregular independence category (essentially by Sz.-Nagy's dilation theorem).

To summarize

We can extended the regular category/allegory 2-equivalence to a 2-equivalence



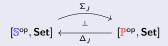
under which $\mathbb{S}(\mathbb{C})$ and $\mathbb{P}(\mathbb{C})$ recover each other. A theory of probability sheaves can be developed for any epiregular independence category \mathbb{S} .

<mark>S</mark> (ℂ)	₽ (ℂ)	\mathbb{C}
FinRV	Coupl	FinStoch
SBP	BorelCoupl	BorelStoch
Surj	TotRel	SetMulti
lsom ^{op}	Con	Gauss
Inj ^{op}	plnj	StrongName

Outlook

Outlook

- **1** let \mathcal{E} be the topos of atomic sheaves on S
- **2** the inclusion $J: \mathbb{S} \to \mathbb{P} = \operatorname{Rel}(\mathbb{S})$ induces an adjunction



whose monad restricts to $\mathcal{M}:\mathcal{E}\to\mathcal{E}$ and is commutative and affine

3 the Kleisli category $\mathcal{K}I(\mathcal{M})$ is a Markov category

4 if $\mathbb{S} = \mathbb{S}(\mathbb{C})$, then $\mathbb{C} \to \mathcal{K}I(\mathcal{M})$ a Markov embedding.

Application in Computer Science: "A Nominal Approach to Probabilistic Separation Logic" [Li&al, LICS'24] (Lilac), "A Monad for Full Ground Reference Cells" [Kammar&al, LLICS'17]

Appendix

The 2-category DilDag consists of

- 0. dilar †-categories
- 1. functors preserving daggers and dilators
- 2. natural coisometries

The 2-category EpiRegInd consists of

- 0. epiregular independence categories
- 1. functors preserving independent squares
- 2. natural transformations with independent naturality squares