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Quick Hello!

Full Name: Jean-Simon Pacaud Lemay,
please feel free to call me JS

I’m from Québec, Canada (I’m currently in
Québec, and actually giving this talk from
my childhood bedroom!)

I’m a lecturer/assistant professor at
Macquarie University (Sydney, Australia)

I’m a category theorist, and I study:

• Differential Categories
• Tangent Categories
• Differential Geometry, Algebraic
Geometry, Differential Algebras
• Traced Monoidal Categories
• Restriction Categories
• Other stuff...

If you find differential categories interesting and would like to chat/work together or even visit our
category theory group at Macquarie: feel free to come to talk to me or reach out by email!



Motivation – Cartesian Differential Categories

Cartesian differential categories (CDC) is a categorical framework for the foundations of the
multivariable differential calculus (over Euclidean spaces).

CDC have been able to recapture lots of concept from differential calculus: linear maps,
partial derivatives, differential equations, de Rham complex, etc.

CDC are also very popular in computer science because they provide the categorical
foundations of the differential lambda calculus, differentiable programming, and certain
automatic differentiation techniques used for machine learning.

Some introductory references:

Blute, R., Cockett, R., Seely, R.A.G. Cartesian Differential Categories (2009)

Garner, R, and Lemay, J-S P. Cartesian differential categories as skew enriched categories.

Manzonetto, G. What is a Categorical Model of the Differential and the Resource λ-Calculi?. (2012)



Motivation – Fermat Theories

Another approach for the categorical foundations of differential calculus is via:

Fermat Theories

E. Dubuc, A. Kock, On 1-form classifiers

https://ncatlab.org/nlab/show/Fermat+theory

Briefly, a Fermat theory is a Lawvere theory that is an extension of commutative rings (so we
can add and multiply maps) that adds a stronger version Hadamard’s lemma as an axiom.
The main idea is that for every map f (x) there exists a unique map f̃ (x , y) such that:

f (x + y) = f (x) + f̃ (x , y)y

From here, one can define the derivative of f as f ′(x) = f̃ (x , 0).

Ben MacAdam (an ex-grad student of Robin Cockett at the same time that I was) showed
that every Fermat theory is a CDC (presented at FMCS2016 in Vancouver, and also in
unpublished notes).

So Fermat theories are CDC. Great! However, in general though: 1) CDC are not Lawvere
theories and 2) we can’t always multiply maps in a CDC...

https://ncatlab.org/nlab/show/Fermat+theory


Motivation – Enter Carlos

Carlos was my undergrad student at Macquarie who just wanted to learn about doing math
research. He chose to learn about Fermat theories and how they were CDC (because I had
never really sat down and looked at Fermat theories and Ben’s proof in detail). We made
quick progress, and early on we figured out how to properly generalize Fermat theories...

TODAY’S STORY: Cartesian Fermat categories, the CDC analogue of a Fermat theory.

MAIN RESULT: Every Cartesian Fermat category is a CDC.



Disclaimer

I’ve recently been made aware that Ben (with Robin and Jonathan) probably thought about
some of these ideas (though unpublished).

So Carlos and I may have rediscovered somethings Ben did...

I’ve reached out to Ben to compare ideas.



Cartesian Left k-Linear Categories – Definition

The underlying category of a Cartesian differential/Fermat category is a Cartesian left k-linear
category, which is a category where we can take sums and scalar multiplication of maps, but
where not every map is k-linear.

Definition

For a commutative semiring k, a left k-linear category is a category X such that each homset
X(A,B) is a k-module with:

+ : X(A,B)× X(A,B)→ X(A,B) 0 ∈ X(A,B) · : k × X(A,B)→ X(A,B)

such that pre-composition preserves the k-linear structure:

(s · f + t · g) ◦ x = s · (f ◦ x) + t · (g ◦ x)

A map f : A→ B is said to be k-linear if post-composition by f preserves the k-linear structure:

f ◦ (s · x + t · y) = s · (f ◦ x) + t · (f ◦ y)

A Cartesian left k-linear category (CLLCk ) is a left k-linear category with finite products such
that the projection maps πj : A1 × . . .× An → Aj are k-linear.



Cartesian Left k-Linear Categories – Examples

Example

A Cartesian k-linear category is a CLLCk such that every map is k-linear. Equivalently, it is a
category with finite products that is enriched over k-modules. In this case, this product × is in
fact a biproduct! So a Cartesian k-linear category is equivalently a category with finite biproducts
that is also enriched over k-modules. For example, MODk is a Cartesian k-linear category.

Example

Let Polyk be the Lawvere theory of polynomials, that is, the category whose objects are n ∈ N
and where a map P : n→ m is a tuple of polynomials:

P = 〈p1(~x), . . . , pm(~x)〉 pi (~x) ∈ R[x1, . . . , xn]

Polyk is a CLLCk (where n ×m = n + m). The k-linear maps in Polyk are tuples of polynomials
which are k-linear.

Example

Let SMOOTH be the category of smooth real functions, that is, the category whose objects are
the Euclidean vector spaces Rn and whose maps are smooth function F : Rn → Rm, which is
actually an m-tuple of smooth functions:

F = 〈f1, . . . , fm〉 fi : Rn → R
SMOOTH is a CLLCR. Note that PolyR is a sub-CLLCR of SMOOTH. The R-linear maps in
SMOOTH are precisely the usual R-linear morphisms F : Rn → Rm.



Cartesian Differential Categories – Definition

Definition

A Cartesian k-differential category (CDCk ) is a Cartesian left k-linear category X equipped with
a differential combinator D, which is a family of operators:

D : X(A,B)→ X(A× A,B)

f : A→ B

D[f ] : A× A→ B

where D[f ] is called the derivative of f , and which satisfies seven axioms which capture the basics
of the derivative from differential calculus (which we will see in a few slides).



Cartesian Differential Categories – Main Example

Example

SMOOTH is a CDCR, where for a smooth function F : Rn → Rm, its derivative
D[F ] : Rn × Rn → Rm is:

D[F ](~x , ~y) := J(F )(~x) · ~y =

〈
n∑

i=1

∂f1

∂xi
(~x)yi , . . . ,

n∑
i=1

∂fm

∂xi
(~x)yi

〉

where J(F )(~x) is the Jacobian of F at ~x and where · is matrix multiplication. This is the total
derivative of F .

In the special case of m = 1, so for a smooth function f : Rn → R, its derivative
D[F ] : Rn × Rn → R is:

D[f ](~x , ~y) = ∇(f )(~x) · ~y =
n∑

i=1

∂f

∂xi
(~x)yi

where ∇(f ) is the gradient of f .



Cartesian Differential Categories – Other Examples

Example

Any Cartesian k-linear category is a CDCk , where for a map f : A→ B:

D[f ] := A× A
π2 // A f // B

For example, MODk is a CDCk where D[f ](x , y) = f (y).

Example

POLYk is a CDCk where for a map P : n→ m with P = 〈p1, . . . , pn〉, its derivative
D[P] : n × n→ m is:

D[P] :=

〈
n∑

i=1

∂p1

∂xi
yi , . . . ,

n∑
i=1

∂pn

∂xi
yi

〉
n∑

i=1

∂p1

∂xi
yi ∈ R[x1, . . . , xn, y1, . . . , yn]

In particular when m = 1, p : n→ 1 which is a polynomial p(x1, . . . , xn), its derivative
D[p] : n × n→ 1 is the polynomial:

D[p](x1, . . . , xn, y1, . . . , yn) =
n∑

i=1

∂p1

∂xi
yi

Note that POLYR is a sub-CDCR of SMOOTH.



Differential Combinator – Axioms

To help us with the axioms for a differential combinator, we will use the following
notation/proto-term logic:

D[f ](a, b) :=
df (x)

dx
(a) · b

Example

The notation comes from SMOOTH: D[f ](~x , ~y) := ∇(f )(~x) · ~y .

Remark

There is a sound and complete term logic for Cartesian differential categories. In short: anything
we can prove using the term logic, holds in any Cartesian differential category. So doing proofs in
the term logic is super useful!



CD.1 - k-Linearity of Combinator & CD.2 - k-Linearity in Second Argument

k-linearity of Combinator:

D[r · f + s · g ] = r · D[f ] + s · D[g ]

dr · f (x) + s · g(x)

dx
(a) · b = r ·

df (x)

dx
(a) · b + s ·

dg(x)

dx
(a) · b

k-linearity in Second Argument

D[f ] ◦ 〈a, r · b + s · c〉 = r · D[f ] ◦ 〈a, b〉+ s · D[f ] ◦ 〈a, c〉

df (x)

dx
(a) · (r · b + s · c) = r ·

df (x)

dx
(a) · b + s ·

df (x)

dx
(a) · c



CD.3 - Identities + Projections & CD.4 - Pairings

Identities + Projections

D[1] = π1 D[πj ] = πn+j

dx

dx
(a) · b = b

dxi

d(x1, . . . , xn)
(a1, . . . , an) · (b1, . . . , bn) = bj

Pairings

D[〈f1, . . . , fn〉] = 〈D[f1], . . . ,D[fn]〉

d〈f1(x), . . . , fn(x)〉
dx

(a) · b =

〈
df1(x)

dx
(a) · b, . . . ,

dfn(x)

dx
(a) · b

〉

Example

In SMOOTH, if F = 〈f1, . . . , fn〉, then D[F ](~x , ~y) := 〈D[f1](~x , ~y), . . . ,D[fn](~x , ~y)〉.



CD.5 - Chain Rule

Chain Rule:

D[g ◦ f ] = D[g ] ◦ 〈f ◦ π0,D[f ]〉

dg(f (x))

dx
(a) · b =

dg(y)

dy
(f (a)) ·

(
df (x)

dx
(a) · b

)



CD.6 - Linearity in Second Argument & CD.7 - Symmetry

f : A→ B

D[f ] : A× A→ B

D [D[f ]] : (A× A)× (A× A)→ B

D-Linearity in Second Argument:

D [D[f ]] ◦ 〈a, 0, 0, b〉 = D[f ] ◦ 〈a, b〉

d df (x)
dx

(y) · z
d(y , z)

(a, 0) · (0, b) =
df (x)

dx
(a) · b

Symmetry of Partial Derivatives:

D [D[f ]] ◦ 〈〈a, b〉, 〈c, d〉〉 = D [D[f ]] ◦ 〈〈a, c〉, 〈b, d〉〉

d df (x)
dx

(y) · z
d(y , z)

(a, b) · (c, d) =
d df (x)

dx
(y) · z

d(y , z)
(a, c) · (b, d)



Cartesian Differential Categories – Definition

Definition

A Cartesian k-differential category (CDCk ) is a Cartesian left k-linear category X equipped with
a differential combinator D, which is a family of operators:

D : X(A,B)→ X(A× A,B)

f : A→ B

D[f ] : A× A→ B

where D[f ] is called the derivative of f , and which satisfies [CD.1] to [CD.7].

Remark

Differential combinators are not necessarily unique! Some CLLCk can have multiple differential
combinators.



D-Linear Maps

In a CDCk , a map f : A→ B is said to be D-linear if:

D[f ] := A× A
π2 // A f // B

df (x)

dx
(a) · b = f (b)

We can think of these as the degree 1 maps.

Example

In SMOOTHR, a smooth function F : Rn → Rm is D-linear in the Cartesian differential sense
precisely when it is R-linear in the classical sense.

Every D-linear map is k-linear. HOWEVER:, the converse is not necessarily true. There are
examples with k-linear maps that are not D-linear. More on this later...



What else can we do with Cartesian differential categories?

Partial derivatives/differentiation in context (the simple slice of a CDC is a CDC).

Study and solve differential equations, and also study exponential functions, trigonometric
functions, hyperbolic functions, etc.

Cockett, R., Cruttwel, G., Lemay, J-S. P., Differential equations in a tangent category I: Complete vector fields,

flows, and exponentials.

Lemay, J-S.P., Exponential Functions for Cartesian Differential Categories.

Linearization, Jacobians and gradients:

Cockett, R., Lemay, J-S.P., Linearizing Combinators.

Lemay, J-S.P., Jacobians and Gradients for Cartesian Differential Categories.

Foundations for automatic differentiation and machine learning algorithms via reverse
differentiation.

Cockett, R., Cruttwell, G., Gallagher, J., Lemay, J.-S. P., MacAdam, B., Plotkin, G., & Pronk, D. (2020). Reverse

derivative categories.

Wilson, P., & Zanasi, F. Reverse Derivative Ascent: A Categorical Approach to Learning Boolean Circuits.

Cruttwell, G., Gallagher, J., & Pronk, D. Categorical semantics of a simple differential programming language.

Cruttwell, G., Gavranovic, B., Ghani, N., Wilson, P., & Zanasi, F. Categorical Foundations of Gradient-Based

Learning.



Cartesian Differential Categories – Even More Examples

Example

The coKleisli category of a differential category is a CDC

R. Blute, R. Cockett, R.A.G. Seely, Differential Categories

Every model of the differential λ-calculus induces a CDC.

Manzonetto, G., 2012. What is a Categorical Model of the Differential and the Resource λ-Calculi?.

The differential objects of a Cartesian tangent category is a CDC

R. Cockett, G. Cruttwell Differential structure, tangent structure, and SDG

Bauer et. al (BJORT) constructed an Abelian functor calculus model of a CDC.

Bauer, K., Johnson, B., Osborne, C., Riehl, E. and Tebbe, A., 2018. Directional derivatives and higher order chain

rules for abelian functor calculus.

There exists both free and cofree constructions of CDCs.

Cockett, J.R.B. and Seely, R.A.G., 2011. The Faa di bruno construction.



Fermat Theories are CDCs

Theorem (B. MacAdam)

A Fermat theory is a CDC.

Example

Examples of Fermat theories include:

SMOOTH (the induced differential combinator from above thm is the one given previously)

POLYk (the induced differential combinator from above thm is the one given previously)

Lots more examples can be found in:

Carchedi, D. & Roytenberg, D. On Theories of Superalgebras of Differentiable Functions.

Goal: give generalized version of Fermat theories, that are more of a direct analogue of CDC.



Cartesian Fermat Categories – Definition

Recall that the main idea about Fermat theories was that: for every map f (x) there exists a
unique map f̃ (x , y) such that:

f (x + y) = f (x) + f̃ (x , y)y

But recall that I never mentioned multiplication in a CDC, so we need to fix that...

So instead the idea is that for every map f (x) there exists a unique map F[f ](x , y , z) such that:

f (x + y) = f (x) + F[f ](x , y , y)

where F[f ](x , y , z) = f̃ (x , y)z

Definition

A Cartesian k-Fermat category (CFCk ) is a Cartesian left k-linear category X such that for every
map f : A→ B, there exists a unique map F[f ] : A× A× A→ B such that:

[F.1] F[f ] is k-linear in its third argument:

F[f ] ◦ 〈x , y , r · z + s · w〉 = r · F[f ] ◦ 〈x , y , z〉+ s · F[f ] ◦ 〈x , y ,w〉

[F.2] f ◦ (x + y) = f ◦ x + F[f ] ◦ 〈x , y , y〉

We call F[f ] the Fermat extension of f (or just Fermat of f for short), and call F[−] the Fermat
combinator.

Remark

For a CLLCk being a CFCk is a property!



Cartesian Fermat Categories – Examples

Example

SMOOTH is a CFCk . For a smooth function f : Rn → R, F[f ] : Rn × Rn × Rn → R is defined as:

F[f ](~x , ~y , ~z) =

1∫
0

∇(f )(~x + t~y) · ~z dt

We can see this as a generalization of Hadamard’s Lemma, or an application of the Fundamental
Theorem of Line Integration. More generally for F : Rn → Rm, F[F ] : Rn × Rn × Rn → Rm is:

F[F ](~x , ~y , ~z) = 〈F[f1](~x , ~y , ~z), . . . ,F[fn](~x , ~y , ~z)〉

Example

Every Cartesian k-linear category is a CFCk where for a map f : A→ B,

F[f ] := A× A× A
π3 // A f // B

For example, MODk is a CFCk where F[f ](x , y , z) = f (z). This is a non Fermat theory example,
since we cannot multiply!



Main Theorem: Cartesian Fermat Categories are CDCs

Theorem

A CFCk is a CDCk .

So from the Fermat combinator F[−] we can build a differential combinator D[−].

To explain this, let’s first look at some useful identities of F[−] that we need for the differential
combinator axioms.

For simplicity, I will use element/function notation.



Cartesian Fermat Categories – Chain Rule

Proposition

F[g ◦ f ](x , y , z) = F[g ] (f (x),F[f ](x , y , y),F[f ](x , y , z))

Proof.

Need to show that h(x , y , z) = F[g ] (f (x),F[f ](x , y , y),F[f ](x , y , z)) satisfies [F.1] and [F.2].



Cartesian Fermat Categories – Chain Rule

Proposition

F[g ◦ f ](x , y , z) = F[g ] (f (x),F[f ](x , y , y),F[f ](x , y , z))

Proof.

We need to show that h(x , y , z) = F[g ] (f (x),F[f ](x , y , y),F[f ](x , y , z)) satisfies [F.1] and [F.2].

[F.1]:
h(x , y , r · z + s · w) = F[g ] (f (x),F[f ](x , y , y),F[f ](x , y , r · z + s · w))



Cartesian Fermat Categories – Chain Rule

Proposition

F[g ◦ f ](x , y , z) = F[g ] (f (x),F[f ](x , y , y),F[f ](x , y , z))

Proof.

We need to show that h(x , y , z) = F[g ] (f (x),F[f ](x , y , y),F[f ](x , y , z)) satisfies [F.1] and [F.2].

[F.1]:
h(x , y , r · z + s · w) = F[g ] (f (x),F[f ](x , y , y),F[f ](x , y , r · z + s · w))

= F[g ] (f (x),F[f ](x , y , y), r · F[f ](x , y , z) + s · F[f ](x , y ,w))



Cartesian Fermat Categories – Chain Rule

Proposition

F[g ◦ f ](x , y , z) = F[g ] (f (x),F[f ](x , y , y),F[f ](x , y , z))

Proof.

We need to show that h(x , y , z) = F[g ] (f (x),F[f ](x , y , y),F[f ](x , y , z)) satisfies [F.1] and [F.2].

[F.1]:
h(x , y , r · z + s · w) = F[g ] (f (x),F[f ](x , y , y),F[f ](x , y , r · z + s · w))

= F[g ] (f (x),F[f ](x , y , y), r · F[f ](x , y , z) + s · F[f ](x , y ,w))

= r · F[g ] (f (x),F[f ](x , y , y),F[f ](x , y , z))

+ s · F[g ] (f (x),F[f ](x , y , y),F[f ](x , y ,w))

= r · h(x , y , z) + s · h(x , y ,w)



Cartesian Fermat Categories – Chain Rule

Proposition

F[g ◦ f ](x , y , z) = F[g ] (f (x),F[f ](x , y , y),F[f ](x , y , z))

Proof.

We need to show that h(x , y , z) = F[g ] (f (x),F[f ](x , y , y),F[f ](x , y , z)) satisfies [F.1] and [F.2].

[F.2]:
(g ◦ f )(x + y) = g(f (x + y))



Cartesian Fermat Categories – Chain Rule

Proposition

F[g ◦ f ](x , y , z) = F[g ] (f (x),F[f ](x , y , y),F[f ](x , y , z))

Proof.

We need to show that h(x , y , z) = F[g ] (f (x),F[f ](x , y , y),F[f ](x , y , z)) satisfies [F.1] and [F.2].

[F.2]:
(g ◦ f )(x + y) = g(f (x + y))

= g (f (x) + F[f ](x , y , y))



Cartesian Fermat Categories – Chain Rule

Proposition

F[g ◦ f ](x , y , z) = F[g ] (f (x),F[f ](x , y , y),F[f ](x , y , z))

Proof.

We need to show that h(x , y , z) = F[g ] (f (x),F[f ](x , y , y),F[f ](x , y , z)) satisfies [F.1] and [F.2].

[F.2]:
(g ◦ f )(x + y) = g(f (x + y))

= g (f (x) + F[f ](x , y , y))

= g(f (x)) + F[g ] (f (x),F[f ](x , y , y),F[f ](x , y , y))

= (g ◦ f )(x) + h(x , y , y)



Cartesian Fermat Categories – Chain Rule

Proposition

F[g ◦ f ](x , y , z) = F[g ] (f (x),F[f ](x , y , y),F[f ](x , y , z))

Proof.

So we have shown that h(x , y , z) = F[g ] (f (x),F[f ](x , y , y),F[f ](x , y , z)) satisfies [F.1] and [F.2],
so by uniqueness of F[−], we get that h(x , y , z) = F[g ◦ f ](x , y , z).



Cartesian Fermat Categories – k-Linear Structure

Lemma

F[r · f + s · g ] = r · F[f ] + s · F[g ]



Cartesian Fermat Categories – k-linear maps

Proposition

A map f is k-linear if and only if F[f ](x , y , z) = f (z).

Lemma

F[1A](x , y , z) = z

Lemma

F[πj ](~x , ~y , ~z) = zj



Cartesian Fermat Categories – Pairings

Lemma

F [〈f1, . . . , fn〉] = 〈F[f1], . . . ,F[fn]〉



Cartesian Fermat Categories – Higher-Order

f : A→ B

F[f ] : A× A× A→ B

F [F[f ]] : (A× A× A)× (A× A× A)× (A× A× A)→ B

Lemma

F[f ](x , y , z) = F [F[f ]] ((x , y , 0), (0, 0, y), (0, 0, z))

Lemma

F [F[f ]] ((x1, x2, x3), (y1, y2, y3), (z1, z2, z3)) = F [F[f ]] ((x1, y1, z1), (x2, y2, z2), (x3, y3, z3))



Main Theorem: Cartesian Fermat Categories are CDCs

Theorem

A CFCk is a CDCk where the differential combinator is defined as follows:

DF[f ] := F[f ] ◦ 〈π1, 0, π2〉

or in element notation:
DF[f ](x , y) = F[f ](x , 0, y)



Chain Rule Proof

Proof.

We want to show that DF[g ◦ f ](x , y) = DF[g ]
(
f (x),DF[f ](x , y)

)
.



Chain Rule Proof

Proof.

We want to show that DF[g ◦ f ](x , y) = DF[g ]
(
f (x),DF[f ](x , y)

)
.

DF[g ◦ f ](x , y) = F[g ◦ f ](x , 0, y)



Chain Rule Proof

Proof.

We want to show that DF[g ◦ f ](x , y) = DF[g ]
(
f (x),DF[f ](x , y)

)
.

DF[g ◦ f ](x , y) = F[g ◦ f ](x , 0, y)

= F[g ] (f (x),F[f ](x , 0, 0),F[f ](x , 0, y))



Chain Rule Proof

Proof.

We want to show that DF[g ◦ f ](x , y) = DF[g ]
(
f (x),DF[f ](x , y)

)
.

DF[g ◦ f ](x , y) = F[g ◦ f ](x , 0, y)

= F[g ] (f (x),F[f ](x , 0, 0),F[f ](x , 0, y))

= F[g ] (f (x), 0,F[f ](x , 0, y))



Chain Rule Proof

Proof.

We want to show that DF[g ◦ f ](x , y) = DF[g ]
(
f (x),DF[f ](x , y)

)
.

DF[g ◦ f ](x , y) = F[g ◦ f ](x , 0, y)

= F[g ] (f (x),F[f ](x , 0, 0),F[f ](x , 0, y))

= F[g ] (f (x), 0,F[f ](x , 0, y))

= F[g ]
(
f (x), 0,DF[f ](x , y)

)



Chain Rule Proof

Proof.

We want to show that DF[g ◦ f ](x , y) = DF[g ]
(
f (x),DF[f ](x , y)

)
.

DF[g ◦ f ](x , y) = F[g ◦ f ](x , 0, y)

= F[g ] (f (x),F[f ](x , 0, 0),F[f ](x , 0, y))

= F[g ] (f (x), 0,F[f ](x , 0, y))

= F[g ]
(
f (x), 0,DF[f ](x , y)

)
= DF[g ]

(
f (x),DF[f ](x , y)

)

The other axioms follow from the analogue other identities.



Main Theorem: Cartesian Fermat Categories are CDCs

Theorem

A CFCk is a CDCk where the differential combinator is defined as follows:

DF[f ] := F[f ] ◦ 〈π1, 0, π2〉

or in element notation:
DF[f ](x , y) = F[f ](x , 0, y)

Example

For a Cartesian k-linear category, DF[f ](x , y) = f (y) as before.

For SMOOTH, the induced differential combinator is precisely the one given before.



There is an issue...

Unfortunately, not every Fermat theory is a Cartesian Fermat category...

Thanks to the binomial theorem, POLYk is always a Fermat theory.

Example

Let k = Z2 and consider POLYZ2
. Consider the polynomial p(x) = x2, which is in fact a Z2-linear

map.

Consider the polynomials q(x , y , z) = z2 and r(x , y , z) = yz, which are both Z2-linear in their
third argument.

However, since:
q(x , y , y) = r(x , y , y) = y2

we get that:
p(x + y) = p(x) + q(x , y , y) = p(x) + r(x , y , y)

Thus there are two distinct maps satisfying [F.1] and [F.2] for p(x) = x2. So POLYZ2
is not a

CFCk but is still a CDCk .

So maybe Cartesian Fermat categories are not the right name...



The issue is with DF-Linear Maps

We can also ask what are the DF-Linear Maps:

DF[f ](x , y) = f (y)

Proposition

In a CFCk , DF-Linear ⇔ k-linear.

There are CDCk where some k-linear maps are not D-linear maps!

So Fermat theories where being DF-linear and being k-linear are the same are indeed CFCk .

One way to fix this issue would be consider to use systems of linear maps.

Blute, R., Cockett, J.R.B. and Seely, R.A., Cartesian differential storage categories.

Cockett, R., Lemay, J-S.P., Linearizing Combinators.

Which almost works: I can prove 6/7 axioms.... I’m struck on the analogue of [CD.7]...



More Remarks and Things Left to Look At

We can also take partial versions of F[−], that is, for every map f : C ×A→ B, we can build
a unique map FC [f ] : C × A× A× A→ B which satisfies context versions of [F.1] and [F.2]

FC [f ](c, x , y , z) = F[f ] ((c, x), (0, y), (0, z))

In other words, for a CFCk X, every simple slice category X[C ] is a CFCk .

From any CFCk we can build a Fermat theory using an internal semiring object.

We should be able to build cofree CFCk using the higher order chain rule for F[−].

The chain rule for F[−] induces an endofunctor H defined as:

H(A) = A× A× A H(f )(x , y , z) = (f (x),F[f ](x , y , y),F[f ](x , y , z))

Is this possibly a tangent category? Or what is the Fermat analogue of a tangent category?

If a CDCk has integration, can it be a CFCk?

There is another axiomatization of Fermat theories using difference quotients, that is, for
every map f (x), there exists a unique map ∆(f )(x , y) such that:

f (x)− f (y) = ∆(f )(x , y)(x − y)

Note that ∆(f ) is not the same as f̃ but we can build one from the other. In this case the
derivative is f ′(x) = ∆(f )(x , x). Carlos and I have also given the CD/FCk version of this.

Carchedi, D. & Roytenberg, D. On Theories of Superalgebras of Differentiable Functions.



Thanks for listening! Merci!

Paper in progress (maybe?).

Email: js.lemay@mq.edu.au

Website: https://sites.google.com/view/jspl-personal-webpage

js.lemay@mq.edu.au
https://sites.google.com/view/jspl-personal-webpage

