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Semantic
Inferentialism

• Project: Understand the sort of propositional conceptual content
that consists in the inferential roles declarative sentences play as 
the premises and conclusions of implication relations.

• Question:  What sort of logic and semantics can we do with 
propositional contents understood relationally, that is, as 
conferred on sentences by the consequence relations in virtue of 
which some express reasons for others?



Vocabularies

• A lexicon L is a set of sentences.

• From the lexicon, we construct the set of all pairs of sets of sentences of L, 
thought of as the set of candidate implications of L:  

CandImp(L) =df. P(L)xP(L)

If <A,B>ÎCandImp(L), the first element AÍL is the premise set of the 
candidate implication <A,B> and the second element BÍL is the conclusion set
of the candidate implication <A,B>.



A consequence relation is just a binary relation on the 
powerset of a lexicon of sentences.

Each vocabulary on a lexicon is the pair of the lexicon 
L and some distinguished proper subset I of 
CandImp(L) thought of as the good implications:

<L,I>  =  <L, IÍP(L)xP(L)>



Orienting Question:

What can logic tell us about 

implication relations?
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There is a consensus about the 

structure of specifically logical 

consequence relations.
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Tarski on Consequence as a Closure Operator

Containment (CO): X Í Con(X).

Monotonicity (MO): X ÍY  Þ Con(X) Í Con(Y).

Transitivity-as-Idempotence (CT): Con(Con(X)) = Con(X).
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A Structural Mismatch

Many nonlogical senses of 
‘reason for’ (in law, in medicine) 
are probative, and defeasible, 
not dispositive.
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Materially Good Implications can be Substructural

Nonmonotonic:
Tweety is a bird  |~  Tweety flies

but

Tweety is a bird, Tweety is a penguin  #  Tweety flies.

Nontransitive:
Tweety is a penguin  |~  Tweety is a bird and Tweety is a bird  |~  Tweety flies

but

Tweety is a penguin  #  Tweety flies
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First Idea:

Logic is best understood in terms of its applications,

not as pure logic.

1.  What logic is applied to is inferential ‘theories’:

the material consequence relations of nonlogical vocabularies.

2.  Logical rules compute the consequence relation of the vocabulary that 

results from logically extending some prelogical base vocabulary.



Logics as Functions from 
Consequence Relations to 

Consequence Relations
A prelogical base vocabulary <L0,I0> consists of a lexicon L0 of atomic 
sentences and a consequence relation I0, which is a set of pairs of sets of 
sentences of L, thought of as premises and conclusions of good implications.

The syntactic rules of a logic determine a function
from the base lexicon L0 to its logical extension L:
L0ÍL, and if A,BÎL, then AàBÎL,   ¬AÎL,   A&BÎL, and   AÚBÎL.

The semantic rules determine a function 
from the consequence relation I0 Í P(L0)xP(L0) on the base lexicon L0
to a consequence relation IÍ P(L)xP(L) on the lexicon L that results from 
the addition of logically complex sentences.



• Tarski made a conceptual advance by thinking topologically 
about the structure of logical consequence relations.

• Gentzen took a further step by treating particular instances of 
consequence relations as mathematical objects he called 
‘sequents,’ whose metainferential relations we can study.

The sequent ‘G |~ D’ 

says that 

the premise-set G implies the conclusion-set D.



Sequent rules are meta-inferential.

They say that if one set of implications is good, 
then so is another.

Tarski’s Monotonicity (MO):

XÍY  Þ Con(X)ÍCon(Y)

becomes Gentzen’s:

G |~ D MO
G,Q |~ D



Sequent rules can be applied to two kinds of 
sequents relating atomic sentences:

1. Those that hold in virtue of their structure alone, such as
A |~ A

2. Those that are materially good, in virtue of the contents of the 
nonlogical concepts they involve, such as

‘Berkeley is to the West of Pittsburgh’ |~ ‘Pittsburgh is to the East of Berkeley’
and

‘It is raining’  |~  ‘The streets will be wet’



Why Do Logic?

What is the point of elaborating a 
material consequence relation 
governing a prelogical vocabulary 
into a consequence relation 
governing a vocabulary consisting of 
logical compounds of those atomic 
sentences?
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Second Idea:

The point of introducing logical vocabulary is not what it lets us 

prove, but what it lets us say.

• Pure logic can prove that some implication holds in virtue of logic alone.

But it is more important that

• Conditionals say that an implication is good—never mind whether it is 

logically good or materially good (good in virtue of the base consequence relation). 



Logical Expressivism:

The expressive task distinctive of logical vocabulary 

as such is to express reason relations of implication

and incompatibility explicitly in the form of the 

claimable propositional contents of logically complex 

sentences.  



Making Implications Explicit

Deduction-Detachment (DD): G, A |~ B, D
========= Bidirectional Meta-Inference Line

G |~ AàB, D.

This sequent rule shows how the conditional can be introduced to codify implications.

The conditional AàB is implied by a premise-set G just in case if A were added to G, the 
resulting premise-set would imply B.  

So G having AàB as a consequence says that
B follows from A, in the context G.



The Expressive Ideal for Logic 20

1.  The ideal logic would conservatively elaborate the reason relations of a logically 
extended vocabulary from those of its nonlogical base vocabulary.

2.   The ideal logic would have the expressive power to make explicit the reason 
relations of any base vocabulary, as well as its logical extension.

3.   The ideal logic would be structurally universal.
The reason relations codifiable by expressively ideal logical vocabulary include topologically open 
(nonmonotonic and nontransitive) ones.

In sum, the expressively ideal logic is Universally LX:

• It can be conservatively Elaborated from (L) 
• and is Explicative of (X) 
• any constellation of reason relations whatsoever, regardless of 

its structure: universally.



Third Idea:

Compare sets of sequent-calculus connective definitions along 

two dimensions:

1.  The relative expressive power of the logical connectives they 

introduce to say that various constellations of consequence relations hold.

2.  Substructurally:  The extent to which that expressive power persists (or 

degrades gracefully) when structural rules such as monotonicity (MO) and 

transitivity (CT) are not imposed. 



There are Two Kinds of Sequent Rules:

1. Structural Rules, which do not depend on logical connectives 
occurring in the premises or conclusions of sequents:

G |~ A G,A |~D (CT)
G |~ D

2. Connective Rules, which do depend on the occurrence of logical 
connectives in the premises or conclusions of sequents:

G,A  |~  D
G, A&B |~ D



Strategy:

Compare the results of combining different sets of sequent-calculus 
connective definitions with different proper subsets of the 
structural rules.

Look for the most expressively powerful logical connective 
definitions across the widest variety of substructural prelogical 
base vocabularies.



We Have a Winner!

Daniel Scott Kaplan realized that tweaking the reversible 

connective definitions discovered by Gentzen’s student 

Ketonen can yield a remarkably expressively powerful  logic, 

NMMS.

It requires only the minimal structure of Containment (CO):

Premises imply themselves in all contexts.
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NonMonotonic,Multi-Succedent Logic (NMMS) 25

Connective Rules of NMMS:

L¬: G|~D,A R¬: G,A|~D

G,¬A|~D G|~D,¬A

Là: G|~D,A    B,G|D B,G|~D,A Rà: G,A|~B,D

G,AàB|~D G|~AàB,D

L&: G,A,B|~D R&: G|~D,A    G|~D,B   G|~D,A,B
G,A&B|~D G|~D,A&B 

LÚ: G,A|~D G,B|~D G,A,B|~D RÚ: G|~D,A,B
G,AÚB|~D G|~D,AÚB



NonMonotonic,Multi-Succedent Logic (NMMS)
26

NMMS is expressively complete in a strong sense.  

For each set of sequents that holds in a base vocabulary, we 
can compute a single sequent relating logically complex 
sentences that holds in all and only NMMS logical 
elaborations of base vocabularies in which those atomic 
sequents hold—and vice versa.

In this clear sense, the logically complex NMMS sequent 
says that its corresponding logically atomic sequents hold.  



NonMonotonic,Multi-Succedent Logic (NMMS)
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Compare: 
In a classical 2-valued truth-functional semantic setting, for 
any given logically complex sentence, it is settled just what 
combinations of logically atomic sentences have to be true
for it to be true.

In our setting, for any given implication relating logically 
complex sentences, it is settled just which implications
relating atomic sentences must be good for it to be good.



NonMonotonic,Multi-Succedent Logic (NMMS)
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NMMS is universally LX.

NMMS conservatively elaborates even logically atomic 
base vocabularies that are nonmonotonic and 
nontransitive (and more!). 
NMMS is expressively complete for all base vocabularies 
satisfying Containment (CO).



NonMonotonic,Multi-Succedent Logic (NMMS)
29

NMMS is essentially just classical logic. 

In the fully structural, topologically closed setting defined by 
Gentzen’s (and Tarski’s) full set of structural rules, NMMS yields 
exactly the same logical consequence relation as Gentzen’s
sequent-calculus version of classical logic, LK.  

NMMS is supraclassical when applied to any base vocabularies that include 
all instances of CO, and 
NMMS yields exactly the classically valid implications and incompatibilities if it is 
applied to base vocabularies all of whose implications are instances of CO

(a “flat prior”).



NonMonotonic,Multi-Succedent Logic (NMMS)
30

NMMS is not a nonmonotonic logic.
It is a logic for codifying nonmonotonic (and 
nontransitive) consequence relations.

Its own purely logical consequence relation is structurally closed 
and classical: reflexive, monotonic, and transitive.

The consequence relation on the full, logically extended vocabulary
is not closed, since NMMS conservatively extends substructural 
material base vocabularies to which it is applied.



PART 2:
ROLES AND REASONS

Implication-space Semantics 
and Propositional Content



Implication Spaces

An implication space is the set of all pairs of sets of sentences of a lexicon L, 
thought of as the candidate implications of L:  P(L)x P(L).

An implication-space frame (vocabulary) is the pair of an implication space 
defined over a lexicon, together with a distinguished subset I of that space, 
thought of as the good implications:  

<P(L)x P(L), I >.



Ranges of Subjunctive Robustness

The range of subjunctive robustness (RSR) of a candidate implication 
<G,D> is the set of additions to its premises (and conclusion) that would 
make it good, if it is not good, or keep it good, if it is good.

• A commutative monoid on sets of candidate implications combines pairs of them 
by pointwise union.
• The RSR of a candidate implication <G,D> is the pre-image of the set I of good 

implications when the monoid is applied to <G,D>:

{<X,Y>: <GÈX,DÈY>ÎI}.



Ranges of Subjunctive Robustness

The set I partitions candidate implications extensionally into good/bad.

The RSR of each candidate implication (good or bad) is its intension.

Compare: extensional truth values and intensional truth conditions.



Implicational Roles

The implicational role R(<G,D>) of a candidate implication <G,D> is the 
set of (sets of) candidate implications that have the same range of 
subjunctive robustness as <G,D>.

The implications in R(<G,D>) can be intersubstituted with each other 
salva consequentia: 

that is, without turning a good implication (in I) into a bad one (not in I).



Conceptual Roles of Sentences

The conceptual (propositional) content of sentence [A] for some AÎL is the pair of the implicational 
roles of its premissory and conclusory seed implications <A,Æ> and < Æ,A>.

RSR( <A, Æ> ), the range of subjunctive robustness of <A, Æ>, 
determines all the good implications in which A appears as a premise.

RSR(< Æ,A> ), the range of subjunctive robustness of < Æ,A>, 
determines all the good implications in which A appears as a conclusion.

[A] = <a+,a->  =  <  R ({<A, Æ>}), R ({< Æ,A>})  >

These are the inferential consequences and circumstances of application of the sentence A. 



Ranges and Roles again

• The range of subjunctive robustness of implication G|~D is the set of all candidate implications that, when 
pointwise (dual) unioned with <G,D> yield a good implication (one in I).

RSR<G,D> =df. {<X,Y>ÎP(L)x P(L): <GÈX, DÈY> Î I. 

• The implicational role of implication G|~D is the equivalence class of (sets of) candidate implications that 
share its range of subjunctive robustness (intension): 

R({<G,D>}) =df. {<X,Y>ÎP(L)x P(L):  RSR<X,Y> = RSR<G,D>}.



Representing Propositions

We symbolize the implicational role of the sentence A by enclosing A in square brackets:  

[A]

We can decompose that into the pair of a premissory implicational role and a conclusory 

implicational role:

[A] =  <a+, a->

Each of those elements can be further decomposed:

[A] = <a+,a-> = < R ({<A,Æ >}), R ({<Æ,A>}) >



Example: Negation

The negation rules of  NMMS are just those of standard classical logic (Gentzen’s LK):

L¬:  G |~ D, A R¬ : G, A |~ D

G, ¬A |~ D G |~ D, ¬A

The left rule says that the role of ¬A as premise is the same as the role of A as conclusion, 
and 

The right rule says that the role of ¬A as conclusion is the same as the role of A as premise.  

The idea is that where the propositional role of A, [A] is <a+,a->,

negation just exchanges premissory and conclusory roles:

[¬A] = <a-,a+>



Operations on Implicational Roles

Symjunction: R(X) ⊓	R(Y) =df. R(XÈY).

Adjunction: R(X) ⊔	R(Y) =df. R({GÈD: GÎX, DÎY}).



Semantic Definitions of Connectives of NMMS

[A] = df. <a+,  a-> [B] = df. <b+,  b->

⊔ is adjunction of implicational roles, ⊓ is symjunction of implicational roles

[¬A] =df. <a-,  a+>.

[AàB] =df. <a-⊓b+⊓(a-⊔b+),			a+⊔b->.
[A&B] =df. <a+⊔b+,		a-⊓b-⊓(a-⊔b-)>.

[AÚB] =df. <a+⊓b+⊓(a+⊔b+),		a-⊔b->.



Sequent Definitions of Connectives in NMMS

L¬: G|~D,A R¬: G,A|~D
G,¬A|~D G|~D,¬A

Là: G|~D,A B,G|D B,G|~D,A Rà: G,A|~B,D
G,AàB|~D G|~AàB,D

L&: G,A,B|~D R&: G|~D,A G|~D,B G|~D,A,B
G,A&B|~D G|~D,A&B 

LÚ: G,A|~D G,B|~D G,A,B|~D RÚ: G|~D,A,B
G,AÚB|~D G|~D,AÚB



The Metalogical Correspondence between 
Implication-Space and 

Sequent-Calculus Metavocabularies:

1. The first element in the semantic clauses corresponds to the left rule in the sequent calculus. 

The second element corresponds to the right rule in the sequent calculus.

2. The roles super-scripted with a “+” stem from sentences that occur on the left in a top sequent. 

The roles super-scripted with a “−” stem from sentences that occur on the right in a top sequent.

3. An adjunction⊔ indicates that the adjoined roles stem from sentences in a single top sequent.

A symjunction⊓ indicates that the symjoined roles stem from sentences that occur in different top sequents.



Example:   Comparing Sequent-Calculus and
Implication-Space Formulations of 

Connective Definitions

Sequent Rule

Là: G|~D,A B,G|D B,G|~D,A
G,AàB|~D G

Rà: G,A|~B,D

G|~AàB,D

Implication-Space Definition

[AàB] =df. < a-⊓b+⊓(a-⊔b+),	

a+⊔ b- >

Only look at the premises above the sequent line, and only look at the A’s and B’s.
On the premise side of the sequent turnstile, they get a +, on the conclusion side, they get a -.



The Initial Question

From a lexicon of sentences L0, generate the set of candidate implications 

P(L0)xP(L0).  

Pick a distinguished subset of these I0 as the good implications: the premise-

set implies the conclusion-set.

Q:  What structural restrictions are there on the capacity of logical and model-

theoretic metalanguages to express implication relations in this sense and 

manipulate propositions defined by their implicational roles?



Conclusion:  Logic

Traditional connective definitions for classical logic build in Monotonicity and Transitivity.

The logic NMMS—a lightly tweaked version of Ketonen’s reversible connective definitions: 

• has a classical purely logical consequence relation, 

• is supraclassical when applied to substructural base vocabularies, which it elaborates

conservatively and

• is strongly expressively complete: each sequent in the logically extended language 

expresses a specific set of  atomic sequents, and each set of atomic sequents is expressed 

by a single sequent relating logically complex sentences.



Conclusion:  Implication-Space Semantics

To do model theory for radically substructural base vocabularies <P(L0)xP(L0),I0> 

and the logically extended vocabularies elaborated from them:

• Define a commutative monoid on the implication space: pointwise dual union.

• Sort candidate sets of implications into equivalence classes, accordingly as they 

share pre-images of the good implications under the monoid operation.

• The implicational roles that result can be combined into pairs of premissory and 

conclusory roles of sentences.



Logical expressivism and semantic inferentialism set strenuous
requirements for relations to count as consequence or implication
relations.  

Those relations must be suitably expressible with logical vocabulary, 
and the roles sentences play in such relations must yield a semantically
tractable notion of propositional contents—in particular a notion of 
propositional contents that supports combining them in conditionals, 
conjunctions, negations, and all the other ways sentential logic makes 
possible.  



Semantic inferentialists begin, not with sentences, but with 

consequence relations among sentences.

We have seen that logically tractable implication relations 

• that capture various senses of ‘reason for’ and 

• that confer semantically well-behaved propositional contents

can be much more various structurally than hitherto supposed.



Conclusion

• We have shown how to use variants of traditional proof theory and model 

theory—which normally only work in topologically closed settings—to codify 

radically substructural implication relations.

• Logical expressivism is vindicated by the expressively powerful logic NMMS, 

which can make explicit arbitrary material base consequence relations.

• Semantic inferentialism is advanced by implication-space semantics, which is 

sound and complete for sequent-calculus specifications of logics that 

metainferentially extend arbitrary base vocabularies.



Thank You!
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