
CAP – a categorical (re)organization
of computer algebra

Mohamed Barakat

Topos Institute Colloquium
July 17, 2025

Joint work with Sebastian Posur, Kamal Saleh, Fabian Zickgraf,
Tom Kuhmichel

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

http://homalg-project.github.io/
http://homalg-project.github.io/
https://mohamed-barakat.github.io/
https://sebastianpos.github.io
https://github.com/kamalsaleh
https://github.com/zickgraf
https://github.com/TKuh
https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Linear PDE system with polynomial coefficients
Motivating application: Compute the space

Sol(∆) ∶= {(
f(x, y, z)
g(x, y, z)

) ∣ f, g ∈ C∞(R3,R)}

of smooth solutions of the linear PDE system

(∂y∂z −
1
3
∂2z +

1
3
∂x + ∂y −

1
3
∂z)f + (∂y∂z −

1
3
∂2z)g = 0

(∂x∂z + ∂
2
z + ∂z)f + (∂x∂z + ∂

2
z)g = 0

(∂2z − ∂x + ∂z)f + (3∂x∂y + ∂
2
z)g = 0

∂x∂yf = 0
(∂2z − ∂x + ∂z)f + (−3∂2x + ∂

2
z)g = 0

∂2xf = 0
(x∂2z − (x −

3
2
)∂x + (x +

3
2
)∂z +

3
2
) f + (x∂2z +

3
2
∂x +

3
2
∂z)g = 0

(∂3z + 2∂
2
z + ∂z)f + (∂3z + ∂x∂z + ∂

2
z)g = 0

∆(f, g) = 0

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


The algebraic approach – Step 1

Weyl algebra D D ∶= R[x, y, z]⟨∂x, ∂y, ∂z⟩

matrix m∆ over D m∆ ∈D
8×2

D-module F of smooth functions F ∶= C∞(R3,R)

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∂y∂z−
1
3
∂2
z+

1
3
∂x+∂y−

1
3
∂z ∂y∂z−

1
3
∂2
z

∂x∂z+∂2
z+∂z ∂x∂z+∂2

z

∂2
z−∂x+∂z 3∂x∂y+∂2

z
∂x∂y 0

∂2
z−∂x+∂z −3∂2

x+∂
2
z

∂2
x 0

x∂2
z−(x−

3
2
)∂x+(x+

3
2
)∂z+

3
2

x∂2
z+

3
2
∂x+

3
2
∂z

∂3
z+2∂

2
z+∂z ∂3

z+∂x∂z+∂
2
z

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

⋅ (
f
g
) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0

0

0

0

0

0

0

0

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

D8×2

∈
m∆

F2

∈

⋅ ψ =

F8

∈

0

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


The algebraic approach – Step 2
● D ∶= R[x1, . . . , xn]⟨∂x1 , . . . , ∂xn⟩, m∆ ∈D

p×q, F = C∞(Rn,R)
● ∆ ∶ m∆ ⋅ ψ = 0, ψ ∈ Fq.

Interpret the matrix m∆ as a morphism of free D-modules:

Definition
Define the D-module M∆ as the f.p. D-module

M∆ ∶=D
1×q
/ im(D1×p m∆

Ð→D1×q
) =D1×q

/ (D1×p
⋅ m∆)

=∶ coker (D1×p m∆
Ð→D1×q

) .

The residue classes (e1, . . . , eq) of the standard basis of the
free D-module D1×q is a generating system of M∆.

The rows of m∆ are the defining relations between e1, . . . , eq:

m∆ ⋅
⎛
⎜
⎝

e1
⋮

eq

⎞
⎟
⎠
= 0.

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


The algebraic approach – Step 3

We therefore call
⎛
⎜
⎝

e1
⋮

eq

⎞
⎟
⎠

the abstract solution of m∆ψ = 0.

Lemma von NOETHER-MALGRANGE

The map
Hom(M∆,F)

∼

Ð→ Sol(∆,F)
φ ∶= (ei ↦ fi) ↦ ψ ∶= (fi) ∈ F

q

is an isomorphism of R-vector spaces.

The lemma implies that:
● Sol(∆,F) only depends on the isomorphism type of M∆.
● The D-module M∆ can be studied independent of F .
● A different generating set of M∆ yields an equivalent

system ∆′ of linear PDEs with M∆ ≅M∆′ .

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


The algebraic approach – Step 4

Given a finitely presented D-module M :

The bidualizing spectral sequence

E2
pq = Ext

−p
(Extq(M,D),D)) Ô⇒M for p + q = 0

gives rise to the so-called purity filtration of M .

We can use this filtration to solve the above linear PDE system.

Software demo

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


The homalg project

Computing spectral sequences and their induced filtrations
required computational models for:

● The abelian category D-fpmod of f.p. D-modules
● Diagram chasing in abelian categories

Both were realized in the homalg project:
● D-fpmod was implemented as an abelian category
● The only modular part of the implementation was D
● Depending on D, the implementation required various

NF-algorithms up to noncommutative Gröbner bases
● Diagram chasing was realized by generalized morphisms

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


The motivation for the CAP project

● homalg was well-desigend for the intended application
● however, not modular enough to cover more applications
● implementing more complicated categories became

increasingly difficult, e.g.,
● generalizing from f.p. modules to coh. sheaves was a pain

Rectify: Take category theory more seriously
● category theory should guide all design decisions
● categories, functors, ... should become first class citizens
● turn category theory into a programming language:
● write all algorithms using categorical vocabulary

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Revisiting D-fpmod

What is D-fpmod categorically?
● View D as a k-linear category on one object
● D-fpmod is the finite colimit completion of D

FiniteCocompletion as a categorical tower of biadjunctions

k-Cat k-Add k-Cocomp

AdditiveClosure

FiniteCocompletion

Freyd

U

⊣

U

⊣

● AdditiveClosure formally adds direct sums
● AdditiveClosure invents matrices
● Freyd formally adds cokernels
● Freyd is a quotient of the arrow category

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Free-forgetful 2-adjunctions

The above tower of categorical constructors is typically
composed of several free-forgetful 2-adjunctions

D E

L

U

⊣

between a 2-category D of categories (called doctrine) and
another doctrine E of categories with extra structure.

Software demo

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


FiniteCompletions

The dual category construction is also a 2-adjunction on each
doctrine

D Dco−dual

L = Opposite

R = Opposite

⊣

Implementing Opposite requires a lot of meta programming.

More categorical towers of biadjunctions
● CoFreyd ∶= Opposite ○ Freyd ○ Opposite

● FiniteCompletion ∶= Opposite○FiniteCocompletion○Opposite

● FpCoPreSheaves ∶= Opposite ○ FpPreSheaves ○ Opposite

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


A categorical tower for AbelianClosure

A longer categorical tower of biadjunction yields
AbelianClosure as a categorical tower of 2-adjunctions:

Quivs Cat k-Cat ⋯ Abel

PathCategory k[−]

U

⊣

U

⊣

AbelianClosure

U

⊣

U

⊣

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Simplest diagram chasing: The connecting morphism

Snake Lemma: Given three composable morphisms
A

a
Ð→ B

b
Ð→ C

c
Ð→D in an Abelian category with abc = 0.

A B

C D

a

b
c

coker(a)
d

e

ker(e)

f

ker(c)
g

h

coker(h)

i s

ker(b)
j

coker(b)
k

↝ ∃ an ess. unique natural morphism ker(e)
s
Ð→ coker(h) with

ker(b)
j
Ð→ ker(e)

s
Ð→ coker(h)

k
Ð→ coker(b) an exact sequence.

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


A computational proof of the snake lemma

Software demo
https://homalg-project.github.io/nb/

SnakeInFreeAbelian

Exercise: Along the same lines treat spectral sequences of
bicomplexes.

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://homalg-project.github.io/nb/SnakeInFreeAbelian
https://homalg-project.github.io/nb/SnakeInFreeAbelian
https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Spectral sequences of bicomplexes

p

q

E00
2 E10

2 E20
2 E30

2 E40
2

E01
2 E11

2 E21
2 E31

2 E41
2

E02
2 E12

2 E22
2 E32

2 E42
2

E03
2 E13

2 E23
2 E33

2 E43
2

v00 v10 v20 v30 v40

v01 v11 v21 v31 v41

v02 v12 v22 v32 v42

h00 h10 h20 h30

h01 h11 h21 h31

h02 h12 h22 h32

h03 h13 h23 h33

∂012 ∂112 ∂212

∂022 ∂122 ∂222

∂032 ∂132 ∂232

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Examples of categorical towers
We can model
● free left R-modules of finite rank via C(R)⊕

● free right R-modules of finite rank via (C(R)⊕)op

● finitely presented left R-modules via Freyd(C(R)⊕)
● finitely presented right R-modules via Freyd((C(R)⊕)op)
● quivers via Func(C(A⇉ V),Sets)

● ZX-diagrams via Sub(Csp(Slice(Func(C(A⇉ V),Sets))))

● free Abelian categories for theorem proving via Freyd(Freyd(−op)op)

● linear representations of a group G over a field k via Func(C(G), k⊕)
● radical ideals of a ring R via StablePoset(Poset(Slice(C(R)⊕)))

Advantages:
● Reusability: Building blocks can appear in multiple different contexts.
● Separation of concerns: Focus on a single concept at a time.
● Verifiability: Every constructor has a limited scope.
● Emergence: The whole is greater than the sum of its parts.

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Effects on computer implementations

● Efficient development thanks to
● reusability
● separation of concerns
● verifiability
● emergence

● Inefficient execution due to computational overhead :-(
● Solution: compilation

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Overhead of boxing and unboxing

Freyd((C(D)⊕)op)

(C(D)⊕)op

⋮

D

input intermediate result result

first operation second operation

∣

CompilerForCAP
↓

Freyd((C(D)⊕)op)

(C(D)⊕)op

⋮

D

input result

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


© 2024 Kamal Saleh

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Benchmarks
Consider a computation in the categorical tower

Freyd((C(D)⊕)op) ≃ fpmod-D

problem size original code (s) compiled code (s) factor
1 0.2 0.05 ≈ 5
2 2.4 0.06 ≈ 50
3 19.1 0.07 ≈ 250
4 118.9 0.09 ≈ 1250
5 584.5 0.12 ≈ 5000

10 N/A 0.35 N/A
20 N/A 1.34 N/A
30 N/A 3.53 N/A

We see a difference between “finishes in seconds” and “will
never finish”.

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Further applications

CompilerForCAP can also be used
● for removing additional sources of overhead,
● for generating categorical code from categorical towers,
● as a proof assistant for verifying categorical

implementations.

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Conclusion

● Algorithmic category theory is a high-level programming
language.
● Using this language for building categorical towers allows

● to reach a wide range of advanced and complex
applications

● allowing reusability, separation of concerns, verifiability, and
emergence.

● This approach naturally comes with a computational
overhead.
● CompilerForCAP can avoid this overhead, allowing us to

make full use of the advantages of building categorical
towers.

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/


Thank you

Mohamed Barakat CAP – a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/

