CAP — a categorical (re)organization

of computer algebra

Mohamed Barakat

Topos Institute Colloquium
July 17, 2025

“ Universitat
Siegen

Joint work with Sebastian Posur, Kamal Saleh, Fabian Zickgraf,
Tom Kuhmichel

Mohamed Barakat CAP — a categorical (re)organization of computer algebra

http://homalg-project.github.io/
http://homalg-project.github.io/
https://mohamed-barakat.github.io/
https://sebastianpos.github.io
https://github.com/kamalsaleh
https://github.com/zickgraf
https://github.com/TKuh
https://mohamed-barakat.github.io/
http://homalg-project.github.io/

Linear PDE system with polynomial coefficients

Motivating application: Compute the space

Sol(A) = {(‘;g?y’g) | f,¢ C“(R3>R)}

of smooth solutions of the linear PDE system

(040, - 202+ 20, + 0, - £0.)f + (0,0. - $02)g =0

(0:0.+02+0.)f + (0,0.+92)g=0
(02 -0, +0,)f + (30.0, +92)g =0
(02 -0, +0,)f + (=302 +02)g=0

8§f =0

(202 = (2-2) 0+ (2 +3) 0.+ 2) f + (202 + 30, +20.)g =0
(92 +202+0,)f + (02+0,0.+0%)g=0

A(f.9)=0

Mohamed Barakat CAP — a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/

The algebraic approach — Step 1

Weyl algebra D D =R[z,y,2](0s,0y,0)

matrix ma over D mp € D®%?

D-module F of smooth functions F = C*~(R3,R)

D8><2 f2 fS

w w w

mA - = 0
0y0.-202+10,+0,-20. 0,0.-30? f 0
0,0, +02+0, 0,0, +02 . () = 0
82-0,+0, 30,0y +82 9 0
D0y 0 0
02-0,+0, -302+02 0
a3 0 0
202—(2-3)0p+(2+2)0:+2 202+30.+30. 0
82+202%+0, 02+40,0,+0? 0

Mohamed Barakat CAP - a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/

The algebraic approach — Step 2

* D:=R[x1,...,2,)(Ouy,---,0z,), ma € DP*9 F = C®(R",R)
* Atmpa-tp=0, ¢eFi
Interpret the matrix ma as a morphism of free D-modules:

Definition
Define the D-module Ma as the f.p. D-module

Mp = DV /im(DPP 22, D7) = D7/ (D7)
=: coker (DIXP 28, Dlxq) .

The residue classes (e, ..., e,) of the standard basis of the
free D-module D' is a generating system of M.

The rows of ma are the defining relations between ey, ..., €,:

Mohamed Barakat CAP - a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/

The algebraic approach — Step 3

el
We therefore call (:) the abstract solution of ma = 0.

€y

Lemma von NOETHER-MALGRANGE

The map
Hom(Ma,F) = Sol(A,F)
pi=(em fi) = Yi=(fi)eF!

is an isomorphism of R-vector spaces.

The lemma implies that:
* Sol(A,F) only depends on the isomorphism type of M.
e The D-module Ma can be studied independent of F.

¢ A different generating set of M yields an equivalent
system A’ of linear PDEs with Ma =~ M.

Mohamed Barakat CAP - a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/

The algebraic approach — Step 4

Given a finitely presented D-module M:
The bidualizing spectral sequence
2 - —
E,, =Ext?(Ext!(M,D), D))= M forp+q=0

gives rise to the so-called purity filtration of /.

We can use this filtration to solve the above linear PDE system.

Software demo

Mohamed Barakat CAP — a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/

The homalg project

Computing spectral sequences and their induced filtrations
required computational models for:

* The abelian category D-fpmod of f.p. D-modules
¢ Diagram chasing in abelian categories

Both were realized in the homalg project:
e D-fpmod was implemented as an abelian category
¢ The only modular part of the implementation was D

¢ Depending on D, the implementation required various
NF-algorithms up to noncommutative Grébner bases

e Diagram chasing was realized by generalized morphisms

Mohamed Barakat CAP — a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/

The motivation for the CAP project

* homalg was well-desigend for the intended application
however, not modular enough to cover more applications

implementing more complicated categories became
increasingly difficult, e.g.,

e generalizing from f.p. modules to coh. sheaves was a pain

Rectify: Take category theory more seriously
e category theory should guide all design decisions
e categories, functors, ... should become first class citizens
* turn category theory into a programming language:
¢ write all algorithms using categorical vocabulary

Mohamed Barakat CAP — a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/

Revisiting D-fpmod

What is D-fpmod categorically?
e View D as a k-linear category on one object
e D-fpmod is the finite colimit completion of D

FiniteCocompletion as a categorical tower of biadjunctions

FiniteCocompletion

AdditiveClosure

/_\,L /_\
E-Cat 1 k-Add L k-Cocomp
v _/

wu u

AdditiveClosure formally adds direct sums
® AdditiveClosure invents matrices

* Freyd formally adds cokernels

* Freyd is a quotient of the arrow category

Mohamed Barakat CAP — a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/

Free-forgetful 2-adjunctions

The above tower of categorical constructors is typically
composed of several free-forgetful 2-adjunctions

between a 2-category D of categories (called doctrine) and
another doctrine £ of categories with extra structure.

Software demo

Mohamed Barakat CAP — a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/

FiniteCompletions

The dual category construction is also a 2-adjunction on each
doctrine

% = Opposite

D L Dco—dual
_/

% = Opposite

Implementing Opposite requires a lot of meta programming.

More categorical towers of biadjunctions
® CoFreyd = Opposite o Freyd o Opposite
® FiniteCompletion := OppositeoFiniteCocompletionoOpposite

® FpCoPreSheaves = Opposite o FpPreSheaves o Opposite

Mohamed Barakat CAP — a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/

A categorical tower for AbelianClosure

A longer categorical tower of biadjunction yields
AbelianClosure as a categorical tower of 2-adjunctions:

AbelianClosure

PathCategory k[-]
— /N m
Quivs L Cat L1 Ek-Cat 1L 1 Abel
X ~_ ~_ ~_ —
4 4 4 4

Mohamed Barakat CAP — a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/

Simplest diagram chasing: The connecting morphism

Snake Lemma: Given three composable morphisms
A% B ¢ 5 Dinan Abelian category with abe = 0.

! fL

> B d coker(a)
L[,]
C > D

)

ker(b) L ker(e)]

A
hl
ker(c)
it s

coker(h) i) coker(b)

~ 3 an ess. unique natural morphism ker(e) —> coker(h) with
ker(b) L ker(e) - coker(h) LA coker(b) an exact sequence.

Mohamed Barakat CAP - a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/

A computational proof of the snake lemma

Software demo
https://homalg-project.github.io/nb/
SnakeInFreeAbelian

Exercise: Along the same lines treat spectral sequences of
bicomplexes.

Mohamed Barakat CAP — a categorical (re)organization of computer algebra

https://homalg-project.github.io/nb/SnakeInFreeAbelian
https://homalg-project.github.io/nb/SnakeInFreeAbelian
https://mohamed-barakat.github.io/
http://homalg-project.github.io/

Spectral sequences of bicomplexes

q
EP E3? E3? E3® E3?
\ 503 \ o3 \ 523
2 2 2
02 12 \ 22 \ 32 \ 42
E2 E2 E2 E2 E2
™ oy ™ o2 ™ o2
EY E}! E3! E E3!
\ ")(')1 \ 011 \ ,)21
%)) 2 %))
E Ei° T E T E3° T E3°

p

Mohamed Barakat CAP — a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/

Examples of categorical towers

We can model
e free left R-modules of finite rank via C(R)®
e free right R-modules of finite rank via (C(R)®)°?
e finitely presented left R-modules via Freyd(C(R)®)
e finitely presented right R-modules via Freyd((C(R)®)°P)
e quivers via Func(C(2 =), Sets)
e ZX-diagrams via Sub(Csp((Func(C(2 =), Sets))))
¢ free Abelian categories for theorem proving via Freyd(Freyd(-°")°?)
e linear representations of a group G over a field k via Func(C(G), k%)
e radical ideals of a ring R via StablePoset(Poset((C(R)®)))
Advantages:
* Reusability: Building blocks can appear in multiple different contexts.
* Separation of concerns: Focus on a single concept at a time.
* Verifiability: Every constructor has a limited scope.
* Emergence: The whole is greater than the sum of its parts.

Mohamed Barakat CAP — a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/

Effects on computer implementations

¢ Efficient development thanks to

* reusability

® separation of concerns
e verifiability

* emergence

¢ Inefficient execution due to computational overhead :-(
¢ Solution: compilation

Mohamed Barakat CAP — a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/

Overhead of boxing and unboxing

input intermediate result result

Freyd((C(D)®)°P)
(C(D)®)op 1 ﬂ

1 |

I
1

| 1 l 1

D - [E—|

first operation second operation

CompilerForCAP
!

Freyd((C(D)®)or) MPUt result

(c(D)®)r

\
1

D \

Mohamed Barakat CAP — a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/

Nach ComFiLerForCA?

© 2024 Kamal Saleh

Mohamed Barakat CAP — a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/

Consider a computation in the categorical tower

Freyd((C(D)®)°?) ~ fpmod-D

problem size | original code (s) | compiled code (s) | factor
1 0.2 0.05 ~ b

2 2.4 0.06 ~ 50

3 19.1 0.07 | ~250

4 118.9 0.09 | ~ 1250

5 584.5 0.12 | ~ 5000

10 N/A 0.35 N/A

20 N/A 1.34 N/A

30 N/A 3.53 N/A

We see a difference between “finishes in seconds” and “will
never finish”.

Mohamed Barakat CAP — a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/

Further applications

CompilerForCAP can also be used
¢ for removing additional sources of overhead,
¢ for generating categorical code from categorical towers,

* as a proof assistant for verifying categorical
implementations.

Mohamed Barakat CAP — a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/

Conclusion

¢ Algorithmic category theory is a high-level programming
language.
¢ Using this language for building categorical towers allows
* to reach a wide range of advanced and complex
applications
¢ allowing reusability, separation of concerns, verifiability, and
emergence.
¢ This approach naturally comes with a computational
overhead.

® CompilerForCAP can avoid this overhead, allowing us to
make full use of the advantages of building categorical
towers.

Mohamed Barakat CAP — a categorical (re)organization of computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/

Thank you

Mohamed Barakat CAP — a categorical (re)organizati f computer algebra

https://mohamed-barakat.github.io/
http://homalg-project.github.io/

