CAP – a categorical (re)organization of computer algebra

Mohamed Barakat

Topos Institute Colloquium July 17, 2025

Joint work with Sebastian Posur, Kamal Saleh, Fabian Zickgraf, Tom Kuhmichel

Linear PDE system with polynomial coefficients

Motivating application: Compute the space

$$\operatorname{Sol}(\Delta) \coloneqq \left\{ \begin{pmatrix} f(x, y, z) \\ g(x, y, z) \end{pmatrix} \mid f, g \in C^{\infty}(\mathbb{R}^3, \mathbb{R}) \right\}$$

of smooth solutions of the linear PDE system

$$\begin{array}{lll} \left(\partial_y\partial_z-\frac{1}{3}\partial_z^2+\frac{1}{3}\partial_x+\partial_y-\frac{1}{3}\partial_z\right)f &+& \left(\partial_y\partial_z-\frac{1}{3}\partial_z^2\right)g=0\\ \left(\partial_x\partial_z+\partial_z^2+\partial_z\right)f &+& \left(\partial_x\partial_z+\partial_z^2\right)g=0\\ \left(\partial_z^2-\partial_x+\partial_z\right)f &+& \left(3\partial_x\partial_y+\partial_z^2\right)g=0\\ \partial_x\partial_yf &=& 0\\ \left(\partial_z^2-\partial_x+\partial_z\right)f &+& \left(-3\partial_x^2+\partial_z^2\right)g=0\\ \partial_z^2f &=& 0\\ \left(x\partial_z^2-\left(x-\frac{3}{2}\right)\partial_x+\left(x+\frac{3}{2}\right)\partial_z+\frac{3}{2}\right)f &+& \left(x\partial_z^2+\frac{3}{2}\partial_x+\frac{3}{2}\partial_z\right)g=0\\ \left(\partial_z^3+2\partial_z^2+\partial_z\right)f &+& \left(\partial_z^3+\partial_x\partial_z+\partial_z^2\right)g=0 \end{array}$$

$$\Delta(f,g) = 0$$

Weyl algebra ${\cal D}$	$D \coloneqq \mathbb{R}[x, y, z] \langle \partial_x, \partial_y, \partial_z \rangle$
matrix m_{Δ} over D	$\mathbf{m}_{\Delta} \in D^{8 \times 2}$

D-module \mathcal{F} of smooth functions $\mathcal{F} = C^{\infty}(\mathbb{R}^3, \mathbb{R})$

functions
$$\mathcal{F} = C^{\infty}(\mathbb{R}^3, \mathbb{R})$$

- $D := \mathbb{R}[x_1, \dots, x_n] \langle \partial_{x_1}, \dots, \partial_{x_n} \rangle$, $\mathbf{m}_{\Delta} \in D^{p \times q}$, $\mathcal{F} = C^{\infty}(\mathbb{R}^n, \mathbb{R})$
- $\Delta : \mathbf{m}_{\Delta} \cdot \psi = 0, \quad \psi \in \mathcal{F}^{\mathbf{q}}.$

Interpret the matrix m_{Δ} as a morphism of free D-modules:

Definition

Define the D-module M_{Δ} as the f.p. D-module

$$\begin{split} M_{\Delta} \coloneqq D^{1 \times \pmb{q}} / \operatorname{im} \left(D^{1 \times p} \xrightarrow{\mathtt{m}_{\Delta}} D^{1 \times \pmb{q}} \right) &= D^{1 \times \pmb{q}} / \left(D^{1 \times p} \cdot \mathtt{m}_{\Delta} \right) \\ =: \operatorname{coker} \left(D^{1 \times p} \xrightarrow{\mathtt{m}_{\Delta}} D^{1 \times \pmb{q}} \right). \end{split}$$

The residue classes $(\overline{e}_1, \dots, \overline{e}_q)$ of the standard basis of the free D-module $D^{1 \times q}$ is a generating system of M_{Δ} .

The rows of m_{Δ} are the defining relations between $\overline{e}_1, \ldots, \overline{e}_q$:

$$\mathbf{m}_{\Delta} \cdot \begin{pmatrix} \overline{e}_1 \\ \vdots \\ \overline{e}_q \end{pmatrix} = 0.$$

We therefore call $\left(egin{align*} \overline{e}_1 \\ \vdots \\ \overline{e}_q \end{array} \right)$ the abstract solution of $\mathtt{m}_\Delta \psi = 0$.

Lemma von NOETHER-MALGRANGE

The map

$$\begin{array}{ll} \operatorname{Hom}(M_{\Delta},\mathcal{F}) \stackrel{\sim}{\to} & \operatorname{Sol}(\Delta,\mathcal{F}) \\ \varphi \coloneqq (\overline{e}_i \mapsto f_i) & \mapsto & \psi \coloneqq (f_i) \in \mathcal{F}^{\boldsymbol{q}} \end{array}$$

is an isomorphism of \mathbb{R} -vector spaces.

The lemma implies that:

- $Sol(\Delta, \mathcal{F})$ only depends on the isomorphism type of M_{Δ} .
- The *D*-module M_{Δ} can be studied *independent* of \mathcal{F} .
- A different generating set of M_{Δ} yields an equivalent system Δ' of linear PDEs with $M_{\Delta} \cong M_{\Delta'}$.

Given a finitely presented D-module M:

The bidualizing spectral sequence

$$E_{pq}^2 = \operatorname{Ext}^{-p}(\operatorname{Ext}^q(M, D), D)) \Longrightarrow M \quad \text{for } p + q = 0$$

gives rise to the so-called **purity filtration** of M.

We can use this filtration to solve the above linear PDE system.

Software demo

The homalg project

Computing spectral sequences and their induced filtrations required computational models for:

- The abelian category *D*-fpmod of f.p. *D*-modules
- Diagram chasing in abelian categories

Both were realized in the homalg project:

- D-fpmod was implemented as an abelian category
- ullet The only modular part of the implementation was D
- Depending on D, the implementation required various NF-algorithms up to noncommutative Gröbner bases
- Diagram chasing was realized by generalized morphisms

The motivation for the CAP project

- homalg was well-desigend for the intended application
- however, not modular enough to cover more applications
- implementing more complicated categories became increasingly difficult, e.g.,
- generalizing from f.p. modules to coh. sheaves was a pain

Rectify: Take category theory more seriously

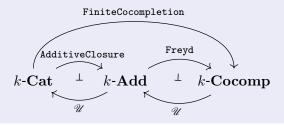
- · category theory should guide all design decisions
- categories, functors, ... should become first class citizens
- turn category theory into a programming language:
- write all algorithms using categorical vocabulary

Revisiting *D*-fpmod

What is D-fpmod categorically?

- View D as a k-linear category on one object
- D-fpmod is the finite colimit completion of D

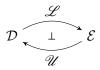
FiniteCocompletion as a categorical tower of biadjunctions



- AdditiveClosure formally adds direct sums
- AdditiveClosure invents matrices
- Freyd formally adds cokernels
- Freyd is a quotient of the arrow category

Free-forgetful 2-adjunctions

The above tower of categorical constructors is typically composed of several free-forgetful 2-adjunctions



between a 2-category $\mathcal D$ of categories (called **doctrine**) and another doctrine $\mathcal E$ of categories with extra structure.

Software demo

FiniteCompletions

The dual category construction is also a 2-adjunction on each doctrine

$$\mathscr{L}=\mathtt{Opposite}$$

$$\mathcal{D}^{\mathrm{co-dual}}$$
 $\mathscr{R}=\mathtt{Opposite}$

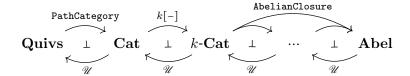
Implementing Opposite requires a lot of meta programming.

More categorical towers of biadjunctions

- CoFreyd ≔ Opposite ∘ Freyd ∘ Opposite
- FiniteCompletion = Opposite \circ FiniteCocompletion \circ Opposite
- FpCoPreSheaves = Opposite \circ FpPreSheaves \circ Opposite

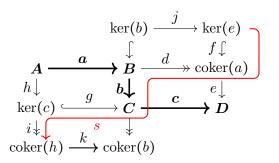
A categorical tower for AbelianClosure

A longer categorical tower of biadjunction yields AbelianClosure as a **categorical tower** of 2-adjunctions:



Simplest diagram chasing: The connecting morphism

Snake Lemma: Given three composable morphisms $A \xrightarrow{a} B \xrightarrow{b} C \xrightarrow{c} D$ in an Abelian category with abc = 0.



 $\Rightarrow \exists$ an *ess. unique natural* morphism $\ker(e) \xrightarrow{s} \operatorname{coker}(h)$ with $\ker(b) \xrightarrow{j} \ker(e) \xrightarrow{s} \operatorname{coker}(h) \xrightarrow{k} \operatorname{coker}(b)$ an exact sequence.

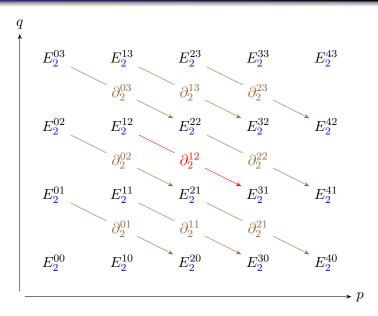
A computational proof of the snake lemma

Software demo

https://homalg-project.github.io/nb/ SnakeInFreeAbelian

Exercise: Along the same lines treat spectral sequences of bicomplexes.

Spectral sequences of bicomplexes



Examples of categorical towers

We can model

- free left R-modules of finite rank via $\mathcal{C}(R)^{\oplus}$
- free right R-modules of finite rank via $(\mathcal{C}(R)^{\oplus})^{\mathrm{op}}$
- finitely presented left R-modules via $\mathbf{Freyd}(\mathcal{C}(R)^{\oplus})$
- finitely presented right R-modules via $\mathbf{Freyd}((\mathcal{C}(R)^{\oplus})^{\mathrm{op}})$
- quivers via $\mathbf{Func}(\mathcal{C}(\mathfrak{A} \Rightarrow \mathfrak{V}), \mathbf{Sets})$
- ZX-diagrams via $Sub(Csp(Slice(Func(\mathcal{C}(\mathfrak{A} \Rightarrow \mathfrak{V}), Sets))))$
- free Abelian categories for theorem proving via Freyd(Freyd(-op)op)
- linear representations of a group G over a field k via $\mathbf{Func}(\mathcal{C}(G), k^{\oplus})$
- radical ideals of a ring R via StablePoset(Poset(Slice($\mathcal{C}(R)^{\oplus}$)))

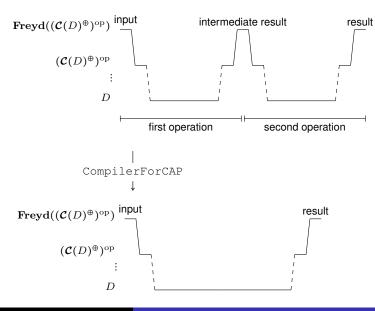
Advantages:

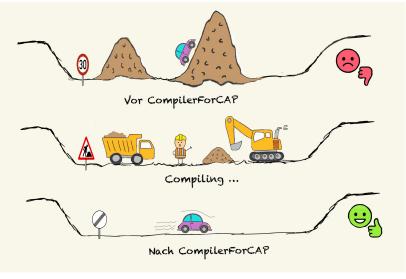
- Reusability: Building blocks can appear in multiple different contexts.
- Separation of concerns: Focus on a single concept at a time.
- Verifiability: Every constructor has a limited scope.
- Emergence: The whole is greater than the sum of its parts.

Effects on computer implementations

- Efficient development thanks to
 - reusability
 - separation of concerns
 - verifiability
 - emergence
- Inefficient execution due to computational overhead :-(
- Solution: compilation

Overhead of boxing and unboxing





© 2024 Kamal Saleh

Benchmarks

Consider a computation in the categorical tower

$$\mathbf{Freyd}((\mathcal{C}(D)^{\oplus})^{\mathrm{op}}) \simeq \mathsf{fpmod}\text{-}D$$

problem size	original code (s)	compiled code (s)	factor
1	0.2	0.05	≈ 5
2	2.4	0.06	≈ 50
3	19.1	0.07	≈ 250
4	118.9	0.09	≈ 1250
5	584.5	0.12	≈ 5000
10	N/A	0.35	N/A
20	N/A	1.34	N/A
30	N/A	3.53	N/A

We see a difference between "finishes in seconds" and "will never finish".

Further applications

CompilerForCAP can also be used

- for removing additional sources of overhead,
- for generating categorical code from categorical towers,
- as a proof assistant for verifying categorical implementations.

Conclusion

- Algorithmic category theory is a high-level programming language.
- Using this language for building categorical towers allows
 - to reach a wide range of advanced and complex applications
 - allowing reusability, separation of concerns, verifiability, and emergence.
- This approach naturally comes with a computational overhead.
- CompilerForCAP can avoid this overhead, allowing us to make full use of the advantages of building categorical towers.

Thank you