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Symmetry/group are important in physics/math

.

• Classical symmetry =
transformations that leave
a classical pattern invariant,
which can be composed:
symmetry as group

Symmetries of wallpapers are
described by 2-dimensional
space groups (17 of them)

- Classification of finite groups
= classification of finite
symmetries, is a great
achievement in mathematics

• Quantum symmetry is a certain “structure” of quantum
systems, which is in general beyond group. Our world is a
quantum world. It is quantum symmetry that govern our world
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What is a quantum system (with no symmetry)?

A quantum system (also known as a lattice system) contains
• A graph with vertices (sites) labeled by i , j , · · ·
→ a sense of distance between two vertices i and j

i
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j

g
j

.

• a total Hilbert space V =
⊗

i Vi with a tensor product
decomposition Vi = Ck = finite Hilbert space on site-i

• The algebra of all local operators:
A = {Oi | operators acting on ⊗j near i Vj}
• A local Hamiltonian (sum of locals): H =

∑
i Oi ,

that control dynamics (ie time evolution) i∂t |ψ⟩ = H |ψ⟩, |ψ⟩ ∈ V
A quantum system ∼ a pair (V = ⊗iVi ,H =

∑
i Oi)

The mathematical models for all quantum materials in physics

• Remark: The dimension of the graph is the dimension of the
space, which is denoted as nd. We will use n + 1D to indicate the
dimension of space-time, whose space dimension is also nd.
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A quantum system with Z2 symmetry

– the old group theory point of view

i
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j

.

• a total Hilbert space V =
⊗

i Vi Z2 = {↑, ↓}
Vi = C2 = span{| ↑⟩, | ↓⟩} = Hilbert space on site-i
Can be realized by a quantum spin system
– a magnetic material

• A Z2 global symmetry is described by

a symmetry transformation W =
⊗

i Xi , Xi =

(
0 1
1 0

)
W 2 = 1 generating the Z2 group (where the Pauli Xi -operator acts
on Vi as Xi | ↑⟩ = | ↓⟩, Xi | ↓⟩ = | ↑⟩), ie flip spin up↔down

• The algebra of symmetric local operators:
Asymm = {Osymm

i

∣∣ Osymm
i W = WOsymm

i }
• The Hamiltonian is a sum of local symmetric operators:
H =

∑
i O

symm
i = H†, which has the Z2 symmetry.
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A quantum system with a symmetry

– the new operator algebra point of view

We do not need to use a transformation to pick symmetric local
operators. We just need to pick a subset of local operators, which
generate an algebra.

• A symmetry is actually defined by the algebra generated a subset
of local operators A = {Oi}, which is called local operator
sub-algebra (LOsA).

- Algebra of all local operators → trivial symmetry (ie no symmetry).
- Algebra of some local operators → non-trivial symmetry

• The Hamiltonian is a sum of local operators in the LOsA A

H =
∑

i Oi which has a constrained dynamics i∂t |ψ⟩ = H |ψ⟩,
which means has a symmetry.
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Symmetries are classified by

braided tensor higher categories

Equivalent operator algebras ↔ holo-equivalent symmetries

• Conjecture: holo-equivalent symmetries in n-dimensional
space are classified by braided tensor n-categories which are
centers of fusion n-categories. Those n-categories are called
symBTC. They replace group to describe quantum symmetry.

- In 1-dimensional space, holo-equivalent symmetries are classified by
braided tensor categories (ie MTCs) which are centers of fusion
categories, or by symMTCs. They are described by the following
data (N ,Nab

c , θa,F
abc
d ):

N ∈ N → number of objects,
Nab

c ∈ N → fusion ring, where a, b, c label objects
θa ∈ U(1) → the topological spin of object-a,
F abc
d ∈ C → the associator of the fusion, etc
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Conservation law and fusion rule

• Noether’s theorem: every continuous symmetry has a
corresponding conservation law.
• Finite symmetry gives rise to a fusion rule (discrete
conservation law)
Consider an Ising model in 1-dimensional lattice (describing some

magnetic materials) HIs = −
∑

i∈Z JZiZi+1 + hXi

where Xi =

(
0 1
1 0

)
and Zi =

(
1 0
0 −1

)
in ↑, ↓ basis.

- Xi flips up-down spins: Xi | ↓⟩ = | ↑⟩, Xi | ↑⟩ = | ↓⟩.
- Zi preserve up-down spins: Zi | ↑⟩ = | ↑⟩, Zi | ↓⟩ = −| ↓⟩.
• The LOsA A is generated by ZiZi+1, Xi , which contains all the
allowed operations and encode the symmetry of the spin system.
• A conservation law: the actions of ZiZi+1, Xi in the LOsA A

have a mod-2 conservation for the number of domain walls
(m’s) ↑↑↑↑ | ↓↓↓↓↓↓ | ↑↑↑↑.
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Another mod-2 conservation and fusion rule

• Choose the left-right spin basis for the local Hilbert space Vi on
each site: ←= |↑⟩+|↓⟩√

2
, →= |↑⟩−|↓⟩√

2
.

- Zi flips left-right spins: Zi | ←⟩ = | →⟩, Zi | →⟩ = | ←⟩.
- Xi preserve left-right spins: Xi | →⟩ = | →⟩, Xi | ←⟩ = −| ←⟩.
• Let · · · →→→ · · · be the reference state (the vacuum).

the actions of ZiZi+1, Xi in the LOsA A have a mod-2
conservation of the number of ← spins (the Z2-charge e’s)

→→→→←→→→→→←→→→→
• The mod-2 conservations are encoded by a fusion rule.
1 = no-excitations (no charges, no domain-walls)
e = Z2-charge excitation
m = domain-wall excitation
f = e ⊗m = charge/domain-wall bound state → N = 4 objects

e ⊗ e = m ⊗m = f ⊗ f = 1, f = e ⊗m, e = f ⊗m, m = e ⊗m.
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Compute θa, F
abc
d of symMTC via operator algebra

We see that 1-dimensional Ising model H = −
∑

i∈Z JZiZi+1 + hXi

has a symmetry described by a symMTC with 4 objects 1, e,m, f
that form a Z2 × Z2 fusion category. How to compute other data?

• The LOsA is generated by Xi ,ZiZi+1, which contains non local
operators. The product of local operators can generate extended
string operators, such as X1Z1Z2X3X4Z5Z6X7X8 → patch
operator

• Transparent-patch operators

OpatchOLOsA = OLOsAOpatch

i j
k LOsA

for any local operator in LOsA A, OLOsA ∈ A, that is far away from
the boundary ∂patch.

- Patch can be string in 1d
- Patch can be string, disk in 2d
- Patch can be string, disk, ball in 3d
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Equivalent transparent-patch operators

and objects of symMTC

• Equivalent transparent-patch operators Ji Wen, arXiv:1912.13492

Opatch ∼ OpatchOLOsA,

if the local operator OLOsA ∈ A is near the boundary ∂patch.

• For our Ising model, we have 4 inequivalent classes of
transparent-patch operators

O1
strij

= id, Oe
strij

= ZiZj , O
m
strij

=

j∏
k=i

Xk , O
f
strij

= Zi−1(

j∏
k=i

Xk)Zj

Thus N = 4 (the symMTC has 4 simple objects 1, e,m, f )

- Om
strij

=
∏j

k=i Xk (with non-empty bulk) generates the Z2 symmetry
transformation on the patch and creates a pair of domain-walls m’s.

- Oe
strij

= ZiZj = (ZiZi+1)(Zi+1Zi+2) · · · (with empty bulk) created a
pair of Z2 charges e’s.

- O f
strij
∼ Oe

strij
Om

strij
is the product of the above two patch operators.
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Algebra of transparent-patch operators

Oe
strij

Oe
strij

= O1
strij
, Om

strij
Om

strij
= O1

strij
, Oe

strij
Om

strij
= O f

strij

→ Fusion ring Nab
c (conservation) e ⊗ e = 1, m ⊗m = 1, e ⊗m = f

Oe
strij

Oe
strjk

= Oe
strik

, Om
strij

Om
strjk

= Om
strik

, Om
strij

Oe
strkl

= ±Oe
strkl

Om
strij

i k i k
jj j

For example: Ji Wen, arXiv:1912.13492

Om
strij

Oe
strkl

= −Oe
strkl

Om
strij
, i ≪ k ≪ j ≪ l

i j
k l i j

k l

Z Z

Z ZXXXXXXXX

XXXXXXXX

• Non-trivial braiding between boundaries of transparent-patch
operators, e,m → additional data (mutual statistics θem = π) to
describe symmetry beyond conservation (fusion ring e ⊗ e = 1)
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Compute the associater F abc
d from patch operators

0 1 2 3

a b c

b
c

0 1 2 3
a

b

a b c

a
c

abcabc

ab

ab

ab

ab

ab
.

1 2

a b

ab

• Different orders of fusions differ by a phase
d = a ⊗ b ⊗ c → (ab)⊗ c → ((ab)c)
d = a ⊗ b ⊗ c → a ⊗ (bc)→ (a(bc))
((ab)c) = F abc

d (a(bc)) Kawagoe Levin arXiv:1910.11353

- The F -symbol can be computed from the
transparent-patch operators Oe

strij
and Om

strij
,

which can be viewed as hopping operators
for the particles.

- We also need to choose and fix a way how a, b fuses:
• We obtain the F -symbol via

Oa
str10

Ob
str12

Oab
str21

Oab
str12

Oc
str13

= F abc
d Ob

str12
Oc

str13
Oab

str21
Oa

str10
Oab

str12

The algebra of transparent-patch operators Oe
strij

and Om
strij
→

a fusion category (1, e,m, f ;Nee
1 = 1, · · · ;F eee

e = 1, · · · )
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Compute topological spin θa from patch operators

0 1 2 3 0 1 2 3

aa a a

0 1 2 3

a b

a
b

0 1 2 3

a b

b
a .

• The patch operator
Oe

strij
= [eiej ] and

Om
strij

= [mimj ] can be
viewed as a hopping
operator of the e-particle
and the m-particle. Using
the statistics algebra of hopping operators, we can obtain the
self/mutual statistics of the particles 1, e:
Oa

str13
Oa

str21
Oa

str10
= e iθaOa

str10
Oa

str21
Oa

str13
Levin-Wen cond-mat/0302460

• The algebra of all transparent-patch operators (Oe
strij
,Om

strij
,O f

strij
)

→ a non-degenerate braided fusion 1-category (ie symMTC)
(1, e,m, f ;Nab

c ;F abc
d ; e iθa , e iθab)

- e ⊗ e = m ⊗m = f ⊗ f = 1, e ⊗m = f , m ⊗ f = e, f ⊗ e = m
- 1, e,m are bosons θ1,e,m = 1, and f is a fermion θf = −1.
- e,m, f have π mutual statistics between them.
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Classify 1d symmetries (up to holo-equivalence)

• Finite symmetry in 1-dimensional space → MTC. Finite symmetry
n-dimensional space → non-degenerate braided fusion n-category
But not every MTC describes a 1d symmetry.

• Conjecture: 1d symmetries (up to holo-equivalence) are
1-to-1 classified by MTCs in trivial Witt class

Kong Lan Wen Zhang Zheng 2003.08898, 2005.14178; Freed Telemen Moore 2209.07471

• A classification of MTCs (actually modular data) up to rank 12:
# of symm charge/defect (rank) 1 2 3 4 5 6 7 8 9 10 11 12

# of unitary MTCs 1 4 12 18 10 50 28 64 81 76 44 221

# of holo-classes of symm 1 0 0 3 0 0 0 6 6 3 0 3

# of (anomalous) group-symm 1Z1 0 0 2Zω
2

0 0 0 6Sω
3

3Zω
3

0 0 0

Ng Rowell Wen arXiv:2308.09670

• Conjecture: nd symmetries (up to holo-equivalence) are
1-to-1 classified by braided fusion n-categories which is a
center of a fusion n-category

Kong Lan Wen Zhang Zheng 2003.08898, 2005.14178; Freed Telemen Moore 2209.07471
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Application of symMTC:

classify gapped phases of matter

• We can classify all gapped phases of symmetric systems whose
symmetry is described by a symMTC M.

ε −> 0

∆

subspace
ground−state −>finite gap  

.

- A gapped Hamiltonian H is the one with gapped
spectrum in large system-size limit.

- Two gapped Hamiltonians are equivalent if they
can be connected by a path of gapped Hamiltonians.

- A gapped phase is an equivalence class of gapped Hamiltonians.

Gapped phases of symmetric systems with a symMTC M

are 1-to-1 classified by the Lagrangian condensable algebras
A of the symMTC M.

- A Lagrangian condensable algebra A = ⊕Aaa,Aa ∈ Z
∼ a maximal set of objects with trivial braiding amoung them
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Rank 4 holo-equivalent symmetries in 1d space

Three holo-equivalence classes of 1 + 1D symmetries at rank-4:

• Z2-symmetry: symMTC = DZ2 (group-like)
Two gapped phases:

- symmetric phase with a single ground state · · · →→→→ · · ·
- symmetry broken phase with two degenerate ground states:
· · · ↑↑↑↑ · · · and · · · ↓↓↓↓ · · ·
• Anomalous Z2-symmetry: symMTC = Dω

Z2
(group-like)

One gapped phase:
- symmetry broken phase with two degenerate ground states.

• double-Fibonacci symmetry: symMTC = MdFib (beyond group)

ε −> 0

∆

subspace
ground−state −>finite gap  

.

One gapped phase:
- symmetry broken phase with two degenerate
ground states.
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Rank 12 holo-equivalent symmetries in 1d space

The rank-12 symmetries are all beyond group (ie the symMTCs are
not group theoretical). The three symMTCs are Haagerup-Izumi
MTC HI(1)0, HI(1)1, HI(1)−1.

• HI(1)0-symmetry: symMTC = HI(1)0
Three gapped phases:

- symmetry broken phase with two degenerate ground states.
- symmetry broken phase with four degenerate ground states.
- symmetry broken phase with six degenerate ground states.

• HI(1)1-symmetry: symMTC = HI(1)1
One gapped phase:

- symmetry broken phase with six degenerate ground states.

• HI(1)−1-symmetry: symMTC = HI(1)−1

One gapped phase:
- symmetry broken phase with six degenerate ground states.
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A rank-8 symmetry – S3 symmetry in 1d space

• The S3-symmetry is group like and is described by symMTC DS3
d, s 1, 0 1, 0 2, 0 2, 0 2, 1

3
2,− 1

3
3, 0 3, 1

2
⊗ 1 a1 a2 b b1 b2 c c1
1 1 a1 a2 b b1 b2 c c1
a1 a1 1 a2 b b1 b2 c1 c
a2 a2 a2 1 ⊕ a1 ⊕ a2 b1 ⊕ b2 b ⊕ b2 b ⊕ b1 c ⊕ c1 c ⊕ c1
b b b b1 ⊕ b2 1 ⊕ a1 ⊕ b b2 ⊕ a2 b1 ⊕ a2 c ⊕ c1 c ⊕ c1
b1 b1 b1 b ⊕ b2 b2 ⊕ a2 1 ⊕ a1 ⊕ b1 b ⊕ a2 c ⊕ c1 c ⊕ c1
b2 b2 b2 b ⊕ b1 b1 ⊕ a2 b ⊕ a2 1 ⊕ a1 ⊕ b2 c ⊕ c1 c ⊕ c1
c c c1 c ⊕ c1 c ⊕ c1 c ⊕ c1 c ⊕ c1 1 ⊕ a2 ⊕ b ⊕ b1 ⊕ b2 a1 ⊕ a2 ⊕ b ⊕ b1 ⊕ b2
c1 c1 c c ⊕ c1 c ⊕ c1 c ⊕ c1 c ⊕ c1 a1 ⊕ a2 ⊕ b ⊕ b1 ⊕ b2 1 ⊕ a2 ⊕ b ⊕ b1 ⊕ b2

• From the Lagrangian condensable algebras of DS3 , we find that the
symMTC has four gapped phases with ground state degeneracy 1
(symmetric) and 2, 3, 6 (symmetry breaking).
Phase-1 (A1 = 1⊕ b ⊕ c), Phase-2 (A2 = 1⊕ a1 ⊕ 2b)
Phase-3 (A3 = 1⊕ a2 ⊕ c), Phase-6 (A6 = 1⊕ a1 ⊕ 2a2)

• The symMTC DS3 has a Z2 automorphism a2 ↔ b which gives rise
to an automorphism: Phase-1 ↔ Phase-3, Phase-2 ↔ Phase-6
• The two phase transitions, (Phase-2 ↔ Phase-3) and (Phase-1 ↔
Phase-6), are described by the same critical theory.
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Symmetry, group, and beyond

• Symmetry is a natural phenomon

• To sovle polynomial equations, Lagrange (1770)
and Galois (1829) developed group theory.

• Fedorov and Schönflies used group theory in classical
physics to classify 230 crystals (1880s).

• Wigner and Weyl used group theory in quantum physics to
describe quantum symmetries (1920s).

100 years later, we find that quantum symmetries (which is the
same as non-invertible gravitational anomalies) are actually
described by unitary braided tensor higher categories which are
centers of fusion higher categories Kong Wen Zheng 1502.01690

Kong Lan Wen Zhang Zheng 2003.08898, 2005.14178; Freed Telemen Moore 2209.07471

Symmetry is so important in physics and the landscaped of
physics has changed
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