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Symmetry/group are important in physics/math

Peg pm cm

e Classical symmetry = o e
transformations that leave W $$$$ E
a classical pattern invariant, migm@i
which can be composed:
symmetry as group
Symmetries of wallpapers are

described by 2-dimensional
space groups (17 of them)

- Classification of finite groups
= classification of finite
symmetries, is a great
achievement in mathematics

e Quantum symmetry is a certain “structure” of quantum
systems, which is in general beyond group. Our world is a

quantum world. It is quantum symmetry that govern our world
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What is a quantum system (with no symmetry)?

A quantum system (also known as a lattice system) contains
e A graph with vertices (sites) labeled by /., - - -
— a sense of distance between two vertices / and J

e a total Hilbert space V = ). V; with a tensor product
decomposition V; = C* = finite Hilbert space on site-/

e The algebra of all local operators:
A = {O; | operators acting on ®; near i Vi }

e A local Hamiltonian (sum of locals): H =" 0;,
that control dynamics (e time evolution) 10,|v)) = H|), [¢) € V

A quantum system ~ a pair (V =@,V H=>.0))

The mathematical models for all quantum materials in physics

e Remark: The dimension of the graph is the dimension of the
space, which is denoted as nd. We will use n+ 1D to indicate the
dimension of space-time, whose space dimension is also nd.
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A quantum system with Z, symmetry

— the old group theory point of view

e a total Hilbert space V = ).V Zo = {1, 1}

V; = C? =span{| 1), | 1)} = Hilbert space on site-/
Can be realized by a quantum spin system
— a magnetic material

e A 7, global symmetry is described by

a symmetry transformation W = ). X;, Xi = (1) é)
W?2 = 1 generating the Z, group (where the Pauli X;-operator acts
onVias Xi| 1) =|1), Xi| L) =1|1)), ie flip spin up<>down
e The algebra of symmetric local operators:
Asymm — {O,_Symm ‘ Ois)’mmW — WO]_Symm}

e The Hamiltonian is a sum of local symmetric operators:
H=>".0""" = HT, which has the Z, symmetry.
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A quantum system with a symmetry

— the new operator algebra point of view

We do not need to use a transformation to pick symmetric local
operators. We just need to pick a subset of local operators, which
generate an algebra.

e A symmetry is actually defined by the algebra generated a subset
of local operators A = {O;}, which is called local operator
sub-algebra (LOsA).

- Algebra of all local operators — trivial symmetry (ie no symmetry).
- Algebra of some local operators — non-trivial symmetry

e The Hamiltonian is a sum of local operators in the LOsA A
H =3". O; which has a constrained dynamics i0;|y)) = H|¢),
which means has a symmetry.
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Symmetries are classified by

braided tensor higher categories

Equivalent operator algebras <> holo-equivalent symmetries

e Conjecture: holo-equivalent symmetries in n-dimensional
space are classified by braided tensor n-categories which are
centers of fusion n-categories. Those n-categories are called
symBTC. They replace group to describe quantum symmetry.

- In 1-dimensional space, holo-equivalent symmetries are classified by
braided tensor categories (ie MTCs) which are centers of fusion
categories, or by symMTCs. They are described by the following
data (N, N2 0, F3P°):

N € N — number of objects,

N?* € N — fusion ring, where a, b, c label objects
0, € U(1) — the topological spin of object-a,
Fjbc € C — the associator of the fusion, etc
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Conservation law and fusion rule

e Noether’s theorem: every continuous symmetry has a
corresponding conservation law.

e Finite symmetry gives rise to a fusion rule (discrete
conservation law) 1
Consider an Ising model in 1-dimensional lattice (describing some

magnetic materials) His = — Y., JZiZi11 + hX; ‘*?**'?**

where X; = ((1) é) and Z; = <(1) _01> in T, | basis.

- X; flips up-down spins: X 1) = | 1), X[ 1) = 1)

- Z; preserve up-down spins: Z;| 1) = | 1), Zl|l) =—|1]).

e The LOsA A is generated by Z;Z;,1, X;, which contains all the
allowed operations and encode the symmetry of the spin system.

e A conservation law: the actions of Z;Z;,1, X; in the LOsA A
have a mod-2 conservation for the number of domain walls

(m's) 1111 | WL [ 1111
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Another mod-2 conservation and fusion rule

e Choose the left-right spin basis for the local Hilbert space V; on
— I+ _ -y
each site: <= R —= 1
- Z; flips left-right spins: Z;| «—) = | —), Z| —) = «+).
- X; preserve left-right spins: Xi| —) =| —), Xi| <) = —| <).
o Let --- —-—— --- be the reference state (the vacuum).

the actions of Z;Z; 1, X; in the LOsA A have a mod-2
conservation of the number of < spins (the Z,-charge e's)
e e T e e e T e e
e The mod-2 conservations are encoded by a fusion rule.
1 = no-excitations (no charges, no domain-walls)
e = Z»-charge excitation
m = domain-wall excitation
f = e @ m = charge/domain-wall bound state — N = 4 objects

eXxe=mIm=FfRFf=1, f=e®m e=fXm m=exm.
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Compute 6,, F3b¢ of symMTC via operator algebra

We see that 1-dimensional Ising model H = — 3., JZ;Z; 1 + hX;
has a symmetry described by a symMTC with 4 objects 1,e, m, f
that form a Z, x Z, fusion category. How to compute other data?

e The LOsA is generated by X;, Z;Z; 1, which contains non local
operators. The product of local operators can generate extended
string operators, such as X122, X3X, 2525 X7 Xg — patch
operator
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Compute 6,, F3b¢ of symMTC via operator algebra

We see that 1-dimensional Ising model H = — 3., JZ;Z; 1 + hX;
has a symmetry described by a symMTC with 4 objects 1,e, m, f
that form a Z, x Z, fusion category. How to compute other data?

e The LOsA is generated by X;, Z;Z;,1, which contains non local
operators. The product of local operators can generate extended
string operators, such as X122, X3X, 2525 X7 Xg — patch

operator
e Transparent-patch operators )
[O————@
Opatch OLOSA - OLOSA Opatch k o LOSA J

for any local operator in LOsA A, O_osa € A, that is far away from
the boundary dpatch.

- Patch can be string in 1d
- Patch can be string, disk in 2d
- Patch can be string, disk, ball in 3d
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Equivalent transparent-patch operators

and objects of symMTC

e Equivalent transparent-patch operators Ji Wen, arXiv:1912.13492
Opatch ~ Opatch OLOsAa

if the local operator O psp € A is near the boundary dpatch.

e For our Ising model, we have 4 inequivalent classes of
transparent-patch operators

= Z7Z;, OF

strjj strjj strjj Hka str,-j =7z HXk

O} =id, O¢
Thus N = 4 (the symMTC has 4 S|mple objects 1, e m f)

O, = HJ - Xk (with non-empty bulk) generates the Z, symmetry
transformatlon on the patch and creates a pair of domain-walls m’s.
- 05, =27y =(ZiZii1)(Zis1Zii2) - - - (with empty bulk) created a

stri;
pair of Z, charges e's.

- Of, ~ 0% Of is the product of the above two patch operators.

strj; strjj ~strj;
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Algebra of transparent-patch operators

o, 08 =0, or orm = Ok og, Or = Of,

strjj ~Ustrjj stri; strjj ~strjj stri;? strjj ~7strj; strjj

— Fusion ring N2° (conservation) e e =1 m@m=1, e@m=f

e e
Ostr,J O

strjx

_ Oe Om Om _ Om Om Oe

strig? strij ~strjx strig? strij ~stry

=+0g,, 0%

stry ~stri;
i°—j°7.—°k > i'—j'—°k ——o [ ———
For example: Ji Wen, arXiv:1912.13492
m e o e m . -
04.05,, = Ostrk, Oy, 1<k

strjj ~Ustry

XXXXXXXX
| ——@ -—=-
z z o

e Non-trivial braiding between boundaries of transparent-patch
operators, e, m — additional data (mutual statistics 0., = 7) to
describe symmetry beyond conservation (fusion ring e @ e = 1)
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c a b ¢

Compute the associater Fjbc from patch operators
a b

e Different orders of fusions differ by a phase
d=a®b®c— (ab) ® c = ((ab)c)

ab

d=a®b®c— a® (bc) — (a(bc)) gb
((ab)c) = F3P<(a(bc)) Kawagoe Levin arxiv:1910.11353 &7, T be

- The F-symbol can be computed from the 0,1 23 0 1,2 3
transparent-patch operators Of, and Of. , —_b_ —c

hich can be viewed as hopping. S o= . 4

which can be viewed as hopping operators ¢ —ab
for the particles. b

- We also need to choose and fix a way how a, b fuses: aby

e We obtain the F-symbol via L

b b ~ab be Ab b b

O;trlg Ostr12 O:trgl O:trlg OSCtr13 - Fj COStrlg OSCtr13 O;trgl O:trlo O:trlz

The algebra of transparent-patch operators Osetr,-j and OS’{’W —
a fusion category (1,e,m, f; Nj* =1,--- ;F&¢ =1,--+)
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Compute topological spin Ha from patch operators

e The patch operator

0%, = lere] and
O;{’, [m;m;] can be \
viewed as a hopping

operator of the e-particle L2 3 0,1 1 5 3
and the m-particle. Using —
the statistics algebra of hopping operators, we can obtam the
self/mutual statistics of the particles 1, e:

a a a __ Aifaa a a .
Ostr13 Ostr21 Ostr10 e Ostr1o Ostr21 Ostr13 Levin-Wen cond-mat/0302460

e The algebra of all transparent-patch operators (05‘9tr ; OSTrU Ostru)

— a non-degenerate braided fusion 1-category (ie symMTC)

(1, e, m, f; N2b; F3be: oifa gifas)
—eQe=mOdm=FfRxf=1,exdm=Ff mMmxUf=e, fQe=m
-1,e,m are bosons 01 ., =1, and f is a fermion 0y = —1.

- e, m, f have m mutual statistics between them.
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Classify 1d symmetries (up to holo-equivalence)

e Finite symmetry in 1-dimensional space — MTC. Finite symmetry
n-dimensional space — non-degenerate braided fusion n-category
But not every MTC describes a 1d symmetry.

e Conjecture: 1d symmetries (up to holo-equivalence) are

1-to-1 classified by MTCs in trivial Witt class
Kong Lan Wen Zhang Zheng 2003.08898, 2005.14178; Freed Telemen Moore 2209.07471

e A classification of MTCs (actually modular data) up to rank 12:
|# of symm charge/defect (rank)| 1 [2[3] 4 [5]6]7] 8 | 9 [10[11]12]
# of unitary MTCs 1 [4[12[ 18 [10[50[28] 64 | 81 |76[44]221
# of holo-classes of symm 100 3|0|0|0| 6|6 |3|0]|S3
# of (anomalous) group-symm |17, /10| 0|2z5| 0|0 |0 652|322/ 0|0 | O

Ng Rowell Wen arXiv:2308.09670
e Conjecture: nd symmetries (up to holo-equivalence) are
1-to-1 classified by braided fusion n-categories which is a

center of a fusion n-category
Kong Lan Wen Zhang Zheng 2003.08898, 2005.14178; Freed Telemen Moore 2209.07471
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Application of symMTC:

classify gapped phases of matter

e We can classify all gapped phases of symmetric systems whose
symmetry is described by a symMTC M.

- A gapped Hamiltonian H is the one with gapped

spectrum in large system-size limit. ground—state | A—>finite gap
subspace e—>0

|

- Two gapped Hamiltonians are equivalent if they
can be connected by a path of gapped Hamiltonians.

- A gapped phase is an equivalence class of gapped Hamiltonians.

Gapped phases of symmetric systems with a symMTC M
are 1-to-1 classified by the Lagrangian condensable algebras
A of the symMTC M.

- A Lagrangian condensable algebra A = ®A,a,A, € Z
~ a maximal set of objects with trivial braiding amoung them
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Rank 4 holo-equivalent symmetries in 1d space

Three holo-equivalence classes of 1 4 1D symmetries at rank-4:

e Z,-symmetry: symMTC = Dy, (group-like)
Two gapped phases:

- symmetric phase with a single ground state - - - -——— - - -

- symmetry broken phase with two degenerate ground states:
coo Mt ecand e LU -

e Anomalous Z,-symmetry:  symMTC = D¢, (group-like)
One gapped phase:

- symmetry broken phase with two degenerate ground states.

e double-Fibonacci symmetry: symMTC = Mg, (beyond group)
One gapped phase: —
- symmetry broken phase with two degenerate
ground-state

A—>finite gap
ground states. subspace

e—>0

|
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Rank 12 holo-equivalent symmetries in 1d space

The rank-12 symmetries are all beyond group (ie the symMTCs are
not group theoretical). The three symMTCs are Haagerup-lzumi
MTC HI(1)o, HI(1)1, HI(1)_;.

e Hi(1)o-symmetry:  symMTC = HI(1)g
Three gapped phases:

- symmetry broken phase with two degenerate ground states.

- symmetry broken phase with four degenerate ground states.

- symmetry broken phase with six degenerate ground states.

e HI(1);-symmetry:  symMTC = HI(1),
One gapped phase:

- symmetry broken phase with six degenerate ground states.

e HI(1)_;-symmetry: symMTC = HI(1)_;
One gapped phase:

- symmetry broken phase with six degenerate ground states.
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A rank-8 symmetry — S3 symmetry in 1d space

e The S3-symmetry is group like and is described by symMTC D,

d,s[1,0]1,0 2,0 2,0 2,3 2,—1 3,0 3,3

®R | 1|a ap b by by c c1

1 1| a; ap b by by c c1

ap | a1 | 1 ap b by by 1 c

a |a|a|(l®ada|l bdb b ® by b ® by cha cda

b | b | b by®by [1Qar®b| b®a by @© ap cda cda

by | by | by b® by by®a |1®a @b b® a c®c c® e

by | by | b2 b ® by by @ a2 b® ax 1@ a; @ b c®c c® e
c|c|a cda cdac cda cda 1Da®b® b @by |a1Dar®bd by @ by
alal]c cha cha cha chca |a1Dan DbOb Db |1Dadbd b Db

e From the Lagrangian condensable algebras of Ds,, we find that the
symMTC has four gapped phases with ground state degeneracy 1
(symmetric) and 2, 3,6 (symmetry breaking).

Phase-1 (A; = 1@ b c),
Phase-3 (A3 = 1@ a, @ ¢),

Phase-2 (A, = 1@ a; @ 2b)
Phase-6 (As =1 @ a; & 2a5)

e The symMTC Dg, has a Z, automorphism a, <> b which gives rise
to an automorphism: Phase-1 <+ Phase-3, Phase-2 <> Phase-6
e The two phase transitions, (Phase-2 <+ Phase-3) and (Phase-1 <>

Phase-6), are described by the same critical theory.
Xiao-Gang Wen (MIT)
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Symmetry, group, and beyond

e Symmetry is a natural phenomon %\7 b
e To sovle polynomial equations, Lagrange (1770) /i
and Galois (1829) developed group theory. j}?l

e Fedorov and Schonflies used group theory in classical
physics to classify 230 crystals (1880s).

e Wigner and Weyl used group theory in quantum physics to
describe quantum symmetries (1920s).

100 years later, we find that quantum symmetries (which is the
same as non-invertible gravitational anomalies) are actually
described by unitary braided tensor higher categories which are
centers of fusion higher categories Kong Wen Zheng 1502.01690

Kong Lan Wen Zhang Zheng 2003.08898, 2005.14178; Freed Telemen Moore 2209.07471
Symmetry is so important in physics and the landscaped of
physics has changed
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