Symmetry as braided tensor higher category

Xiao-Gang Wen (MIT)

Gravitational anomaly as braided tensor higher category:

2025/10/23, Topos Inst

Kong Wen arXiv:1405.5858 Kong Wen Zheng arXiv:1502.01690

Symmetry as braided tensor higher category:

Ji Wen, arXiv:1912.13492

Kong Lan Wen Zhang Zheng, arXiv:2003.08898, 2005.14178 Chatterjee Wen, arXiv:2203.03596

Kong Zheng

Ji

Lan

Zhang

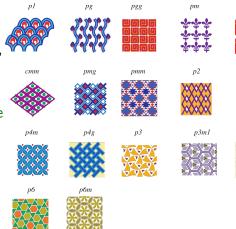
Chatterjee

Symmetry/group are important in physics/math

Classical symmetry =
 transformations that leave
 a classical pattern invariant,
 which can be composed:
 symmetry as group

Symmetries of wallpapers are described by 2-dimensional space groups (17 of them)

Classification of finite groups
 classification of finite
 symmetries, is a great
 achievement in mathematics



 Quantum symmetry is a certain "structure" of quantum systems, which is in general beyond group. Our world is a quantum world. It is quantum symmetry that govern our world cm

p31m

What is a quantum system (with no symmetry)?

A quantum system (also known as a lattice system) contains

- A graph with vertices (sites) labeled by i, j, · · ·
 → a sense of distance between two vertices i and j
- a total Hilbert space $\mathcal{V} = \bigotimes_i \mathcal{V}_i$ with a tensor product decomposition $\mathcal{V}_i = \mathbb{C}^k$ = finite Hilbert space on site-i
- The algebra of all local operators:

$$\mathcal{A} = \{O_i \mid \text{operators acting on } \otimes_{j \text{ near } i} \mathcal{V}_j\}$$

• A **local Hamiltonian** (sum of locals): $H = \sum_i O_i$, that control dynamics (*ie* time evolution) $i\partial_t |\psi\rangle = H|\psi\rangle$, $|\psi\rangle \in \mathcal{V}$

A quantum system
$$\sim$$
 a pair $(\mathcal{V} = \otimes_i \mathcal{V}_i, H = \sum_i O_i)$

The mathematical models for all quantum materials in physics

• **Remark**: The dimension of the graph is the dimension of the space, which is denoted as nd. We will use n+1D to indicate the dimension of space-time, whose space dimension is also nd.

A quantum system with \mathbb{Z}_2 symmetry

- the old group theory point of view
- a total **Hilbert space** $\mathcal{V} = \bigotimes_i \mathcal{V}_i$ $\mathbb{Z}_2 = \{\uparrow, \downarrow\}$ $\mathcal{V}_i = \mathbb{C}^2 = \operatorname{span}\{|\uparrow\rangle, |\downarrow\rangle\} = \operatorname{Hilbert space}$ on site-i Can be realized by a quantum spin system a magnetic material



ullet A \mathbb{Z}_2 global symmetry is described by

a symmetry transformation
$$W = \bigotimes_i X_i$$
, $X_i = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

 $W^2=1$ generating the \mathbb{Z}_2 group (where the Pauli X_i -operator acts on \mathcal{V}_i as $X_i|\uparrow\rangle=|\downarrow\rangle$, $X_i|\downarrow\rangle=|\uparrow\rangle$), *ie* flip spin up \leftrightarrow down

• The algebra of symmetric local operators:

$$\mathcal{A}^{\mathsf{symm}} = \{O_i^{\mathsf{symm}} \mid O_i^{\mathsf{symm}} W = WO_i^{\mathsf{symm}}\}$$

• The Hamiltonian is a sum of local symmetric operators: $H = \sum_i O_i^{\text{symm}} = H^{\dagger}$, which has the \mathbb{Z}_2 symmetry.

A quantum system with a symmetry

- the new operator algebra point of view

We do not need to use a transformation to pick **symmetric local operators**. We just need to pick a subset of local operators, which generate an algebra.

- A symmetry is actually defined by the algebra generated a subset of local operators $\mathcal{A} = \{O_i\}$, which is called **local operator** sub-algebra (LOsA).
- Algebra of all local operators \rightarrow trivial symmetry (*ie* no symmetry).
- Algebra of some local operators ightarrow non-trivial symmetry
- The Hamiltonian is a sum of local operators in the LOsA \mathcal{A} $H = \sum_i O_i$ which has a **constrained dynamics** $\mathrm{i} \partial_t |\psi\rangle = H |\psi\rangle$, which means has a symmetry.

Symmetries are classified by braided tensor higher categories

Equivalent operator algebras \leftrightarrow holo-equivalent symmetries

- Conjecture: holo-equivalent symmetries in n-dimensional space are classified by braided tensor n-categories which are centers of fusion n-categories. Those n-categories are called symBTC. They replace group to describe quantum symmetry.
- In 1-dimensional space, holo-equivalent symmetries are classified by braided tensor categories (*ie* MTCs) which are centers of fusion categories, or by **symMTCs**. They are described by the following data $(N, N_c^{ab}, \theta_a, F_d^{abc})$:

```
N \in \mathbb{N} \to \text{number of objects},

N_c^{ab} \in \mathbb{N} \to \text{fusion ring, where } a, b, c \text{ label objects}

\theta_a \in U(1) \to \text{the topological spin of object-} a,

F_d^{abc} \in \mathbb{C} \to \text{the associator of the fusion, } etc
```

Conservation law and fusion rule

- Noether's theorem: every continuous symmetry has a corresponding conservation law.
- Finite symmetry gives rise to a fusion rule (discrete conservation law)

Consider an **Ising model** in 1-dimensional lattice (describing some magnetic materials) $H_{ls} = -\sum_{i \in \mathbb{Z}} JZ_iZ_{i+1} + hX_i$

where
$$X_i = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$
 and $Z_i = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ in \uparrow , \downarrow basis.

- X_i flips up-down spins: $X_i |\downarrow\rangle = |\uparrow\rangle$, $X_i |\uparrow\rangle = |\downarrow\rangle$.
- Z_i preserve up-down spins: $Z_i | \uparrow \rangle = | \uparrow \rangle$, $Z_i | \downarrow \rangle = | \downarrow \rangle$.
- The LOsA \mathcal{A} is generated by Z_iZ_{i+1} , X_i , which contains all the allowed operations and encode the symmetry of the spin system.
- A conservation law: the actions of Z_iZ_{i+1} , X_i in the LOsA \mathcal{A} have a mod-2 conservation for the number of domain walls (m's)

Another mod-2 conservation and fusion rule

- Choose the left-right spin basis for the local Hilbert space V_i on each site: $\leftarrow = \frac{|\uparrow\rangle + |\downarrow\rangle}{\sqrt{2}}$, $\rightarrow = \frac{|\uparrow\rangle |\downarrow\rangle}{\sqrt{2}}$.
- Z_i flips left-right spins: $Z_i | \leftarrow \rangle = | \rightarrow \rangle$, $Z_i | \rightarrow \rangle = | \leftarrow \rangle$.
- X_i preserve left-right spins: $X_i | \rightarrow \rangle = | \rightarrow \rangle$, $X_i | \leftarrow \rangle = -| \leftarrow \rangle$.
- Let $\cdots \to \to \to \cdots$ be the reference state (the vacuum). the actions of Z_iZ_{i+1} , X_i in the LOsA $\mathcal A$ have a **mod-2 conservation** of the number of \leftarrow spins (the \mathbb{Z}_2 -**charge** e's)
- The mod-2 conservations are encoded by a fusion rule.
 - 1 = no-excitations (no charges, no domain-walls)
 - $e = \mathbb{Z}_2$ -charge excitation
 - m = domain-wall excitation
 - $f = e \otimes m = \text{charge/domain-wall bound state} \rightarrow N = 4 \text{ objects}$
 - $e \otimes e = m \otimes m = f \otimes f = 1$, $f = e \otimes m$, $e = f \otimes m$, $m = e \otimes m$.

Compute θ_a , F_d^{abc} of symMTC via operator algebra

We see that 1-dimensional Ising model $H = -\sum_{i \in \mathbb{Z}} JZ_iZ_{i+1} + hX_i$ has a symmetry described by a symMTC with 4 objects $\mathbf{1}, e, m, f$ that form a $\mathbb{Z}_2 \times \mathbb{Z}_2$ fusion category. How to compute other data?

• The LOsA is generated by $X_i, Z_i Z_{i+1}$, which contains non local operators. The product of local operators can generate extended string operators, such as $X_1 Z_1 Z_2 X_3 X_4 Z_5 Z_6 X_7 X_8 \rightarrow \text{patch}$ operator

Compute θ_a , F_d^{abc} of symMTC via operator algebra

We see that 1-dimensional Ising model $H = -\sum_{i \in \mathbb{Z}} JZ_iZ_{i+1} + hX_i$ has a symmetry described by a symMTC with 4 objects $\mathbf{1}, e, m, f$ that form a $\mathbb{Z}_2 \times \mathbb{Z}_2$ fusion category. How to compute other data?

- The LOsA is generated by $X_i, Z_i Z_{i+1}$, which contains non local operators. The product of local operators can generate extended string operators, such as $X_1 Z_1 Z_2 X_3 X_4 Z_5 Z_6 X_7 X_8 \rightarrow \text{patch}$ operator
- Transparent-patch operators

$$O_{\mathsf{patch}}O_{\mathsf{LOsA}} = O_{\mathsf{LOsA}}O_{\mathsf{patch}}$$

for any local operator in LOsA \mathcal{A} , $O_{LOsA} \in \mathcal{A}$, that is far away from the boundary ∂_{patch} .

- Patch can be string in 1d
- Patch can be string, disk in 2d
- Patch can be string, disk, ball in 3d

Equivalent transparent-patch operators and objects of symMTC

 Equivalent transparent-patch operators Ji Wen, arXiv:1912.13492 $O_{\rm natch} \sim O_{\rm natch} O_{\rm LOSA}$

if the local operator $O_{LOsA} \in \mathcal{A}$ is near the boundary ∂_{patch} .

• For our Ising model, we have 4 inequivalent classes of transparent-patch operators

$$O_{\mathsf{str}_{ij}}^e = \mathrm{id}, \ O_{\mathsf{str}_{ij}}^e = Z_i Z_j, \ O_{\mathsf{str}_{ij}}^m = \prod_{k=i}^j X_k, \ O_{\mathsf{str}_{ij}}^f = Z_{i-1} (\prod_{k=i}^j X_k) Z_j$$

Thus $N = 4$ (the symMTC has 4 simple objects $\mathbf{1}, e, m, f$)

- $O_{\text{str}_{ii}}^m = \prod_{k=i}^J X_k$ (with non-empty bulk) generates the \mathbb{Z}_2 symmetry transformation on the patch and creates a pair of domain-walls m's.
- $O_{\operatorname{str}_{ii}}^e = Z_i Z_j = (Z_i Z_{i+1})(Z_{i+1} Z_{i+2}) \cdots$ (with empty bulk) created a pair of \mathbb{Z}_2 charges e's.
- $O_{\text{str}_{ii}}^f \sim O_{\text{str}_{ii}}^e O_{\text{str}_{ii}}^m$ is the product of the above two patch operators.

Algebra of transparent-patch operators

$$O_{\mathsf{str}_{ij}}^e O_{\mathsf{str}_{ij}}^e = O_{\mathsf{str}_{ij}}^{\mathbf{1}}, \quad O_{\mathsf{str}_{ij}}^m O_{\mathsf{str}_{ij}}^m = O_{\mathsf{str}_{ij}}^{\mathbf{1}}, \quad O_{\mathsf{str}_{ij}}^e O_{\mathsf{str}_{ij}}^m = O_{\mathsf{str}_{ij}}^f$$

 \rightarrow Fusion ring N_c^{ab} (conservation) $e \otimes e = 1$, $m \otimes m = 1$, $e \otimes m = f$

$$O_{\mathsf{str}_{ij}}^e O_{\mathsf{str}_{jk}}^e = O_{\mathsf{str}_{ik}}^e, \quad O_{\mathsf{str}_{ij}}^m O_{\mathsf{str}_{jk}}^m = O_{\mathsf{str}_{ik}}^m, \quad O_{\mathsf{str}_{ij}}^m O_{\mathsf{str}_{kl}}^e = \pm O_{\mathsf{str}_{kl}}^e O_{\mathsf{str}_{ij}}^m$$

$$i \bullet \longrightarrow i \bullet k \Rightarrow i \bullet \longrightarrow i \bullet k \Rightarrow i \bullet \longrightarrow i \bullet k \Rightarrow i \bullet \longrightarrow i \bullet \emptyset$$

For example:

Ji Wen, arXiv:1912.13492

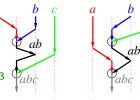
$$O_{\mathsf{str}_{ij}}^m O_{\mathsf{str}_{kl}}^e = -O_{\mathsf{str}_{kl}}^e O_{\mathsf{str}_{ij}}^m, \quad i \ll k \ll j \ll l$$

$$i \stackrel{\text{XXXXXXXX}}{\longleftarrow} j \stackrel{\text{I}}{\longleftarrow} j \stackrel{\text{I}}{\longrightarrow} j \stackrel{\text{I}}{\longleftarrow} j \stackrel{\text{I}}$$

• Non-trivial braiding between boundaries of transparent-patch operators, $e, m \rightarrow$ additional data (mutual statistics $\theta_{em} = \pi$) to describe symmetry beyond conservation (fusion ring $e \otimes e = 1$)

Compute the associater F_d^{abc} from patch operators

- Different orders of fusions differ by a phase $d = a \otimes b \otimes c \rightarrow (ab) \otimes c \rightarrow ((ab)c)$ $d = a \otimes b \otimes c \rightarrow a \otimes (bc) \rightarrow (a(bc))$
 - $d = a \otimes b \otimes c \rightarrow a \otimes (bc) \rightarrow (a(bc))$ $((ab)c) = F_d^{abc}(a(bc))$ Kawagoe Levin arXiv:1910.11353
- The F-symbol can be computed from the transparent-patch operators $O_{\text{str}_{ij}}^e$ and $O_{\text{str}_{ij}}^m$, which can be viewed as hopping operators for the particles.



- We also need to choose and fix a way how a, b fuses:
- We obtain the F-symbol via

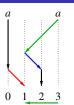
$$O_{\mathsf{str}_{10}}^{a}O_{\mathsf{str}_{12}}^{b}O_{\mathsf{str}_{21}}^{ab}O_{\mathsf{str}_{12}}^{ab}O_{\mathsf{str}_{13}}^{c} = F_d^{abc}O_{\mathsf{str}_{12}}^{b}O_{\mathsf{str}_{13}}^{c}O_{\mathsf{str}_{13}}^{ab}O_{\mathsf{str}_{10}}^{ab}O_{\mathsf{str}_{10}}^{ab}$$

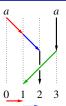
The algebra of transparent-patch operators $O^e_{\mathsf{str}_{ij}}$ and $O^m_{\mathsf{str}_{ij}} \to \mathsf{a}$ fusion category $(\mathbf{1}, e, m, f; N^{ee}_1 = 1, \cdots; F^{eee}_e = 1, \cdots)$

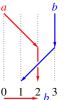
Compute topological spin θ_a from patch operators

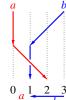
• The patch operator $O_{\text{str}_{ij}}^e = [e_i e_j] \text{ and }$ $O_{\text{str}_{ij}}^m = [m_i m_j] \text{ can be }$ viewed as a hopping operator of the e-particle

and the *m*-particle. Using









the statistics algebra of hopping operators, we can obtain the self/mutual statistics of the particles 1, e:

$$O_{\mathsf{str}_{13}}^a O_{\mathsf{str}_{21}}^a O_{\mathsf{str}_{10}}^a = \mathrm{e}^{\mathrm{i}\,\theta_a} O_{\mathsf{str}_{10}}^a O_{\mathsf{str}_{21}}^a O_{\mathsf{str}_{21}}^a O_{\mathsf{str}_{13}}^a$$
 Levin-Wen cond-mat/0302460

- The algebra of all transparent-patch operators $(O_{\mathsf{str}_{ij}}^e, O_{\mathsf{str}_{ij}}^m, O_{\mathsf{str}_{ij}}^f)$ \to a non-degenerate braided fusion 1-category ($ie\ \mathsf{symMTC}$) $(\mathbf{1}, e, m, f; N_c^{ab}; F_d^{abc}; e^{i\theta_a}, e^{i\theta_{ab}})$
- $-e\otimes e=m\otimes m=f\otimes f=\mathbf{1},\ e\otimes m=f,\ m\otimes f=e,\ f\otimes e=m$
- 1, e, m are bosons $\theta_{1,e,m} = 1$, and f is a fermion $\theta_f = -1$.
- e, m, f have π mutual statistics between them.

Classify 1d symmetries (up to holo-equivalence)

- Finite symmetry in 1-dimensional space → MTC. Finite symmetry
 n-dimensional space → non-degenerate braided fusion n-category

 But not every MTC describes a 1d symmetry.
- Conjecture: 1d symmetries (up to holo-equivalence) are 1-to-1 classified by MTCs in trivial Witt class

Kong Lan Wen Zhang Zheng 2003.08898, 2005.14178; Freed Telemen Moore 2209.07471

• A classification of MTCs (actually modular data) up to rank 12:

# of symm charge/defect (rank)	1	2	3	4	5	6	7	8	9	10	11	12
# of unitary MTCs	1	4	12	18	10	50	28	64	81	76	44	221
# of holo-classes of symm	1	0	0	3	0	0	0	6	6	3	0	3
# of (anomalous) group-symm	$1_{\mathbb{Z}_1}$	0	0	$2_{\mathbb{Z}_2^\omega}$	0	0	0	$6_{S_3^\omega}$	$3_{\mathbb{Z}_3^\omega}$	0	0	0

Ng Rowell Wen arXiv:2308.09670

 Conjecture: nd symmetries (up to holo-equivalence) are 1-to-1 classified by braided fusion n-categories which is a center of a fusion n-category

Kong Lan Wen Zhang Zheng 2003.08898, 2005.14178; Freed Telemen Moore 2209.07471

Application of symMTC: classify gapped phases of matter

- We can classify all **gapped phases** of symmetric systems whose symmetry is described by a symMTC \mathcal{M} .
- A gapped Hamiltonian H is the one with gapped spectrum in large system-size limit. $\alpha = \frac{1}{2} \Delta \rightarrow 0$ Spectrum in large system-size limit. $\alpha = \frac{1}{2} \Delta \rightarrow 0$ Spectrum in large system-size limit. $\alpha = \frac{1}{2} \Delta \rightarrow 0$
- can be connected by a path of gapped Hamiltonians.
- A **gapped phase** is an equivalence class of gapped Hamiltonians.
 - Gapped phases of symmetric systems with a symMTC \mathcal{M} are 1-to-1 classified by the Lagrangian condensable algebras \mathcal{A} of the symMTC \mathcal{M} .
- A Lagrangian condensable algebra $\mathcal{A} = \bigoplus A_a a, A_a \in \mathbb{Z}$ \sim a maximal set of objects with trivial braiding amoung them

Rank 4 holo-equivalent symmetries in 1d space

Three holo-equivalence classes of 1 + 1D symmetries at rank-4:

- \mathbb{Z}_2 -symmetry: symMTC = $\mathfrak{D}_{\mathbb{Z}_2}$ (group-like) Two gapped phases:
- symmetric phase with a single ground state $\cdots \rightarrow \rightarrow \rightarrow \rightarrow \cdots$
- symmetry broken phase with two degenerate ground states:
 - $\cdots \uparrow \uparrow \uparrow \uparrow \uparrow \cdots$ and $\cdots \downarrow \downarrow \downarrow \downarrow \downarrow \cdots$
- Anomalous \mathbb{Z}_2 -symmetry: symMTC = $\mathbb{D}^{\omega}_{\mathbb{Z}_2}$ (group-like) One gapped phase:
- symmetry broken phase with two degenerate ground states.
- double-Fibonacci symmetry: $symMTC = \mathcal{M}_{dFib}$ (beyond group) One gapped phase:
- symmetry broken phase with two degenerate ground states.

Rank 12 holo-equivalent symmetries in 1d space

The rank-12 symmetries are all beyond group (ie the symMTCs are not group theoretical). The three symMTCs are Haagerup-Izumi MTC $HI(1)_0$, $HI(1)_1$, $HI(1)_{-1}$.

- $HI(1)_0$ -symmetry: symMTC = $HI(1)_0$ Three gapped phases:
- symmetry broken phase with two degenerate ground states.
- symmetry broken phase with four degenerate ground states.
- symmetry broken phase with six degenerate ground states.
- $HI(1)_1$ -symmetry: symMTC = $HI(1)_1$ One gapped phase:
- symmetry broken phase with six degenerate ground states.
- $HI(1)_{-1}$ -symmetry: symMTC = $HI(1)_{-1}$ One gapped phase:
- symmetry broken phase with six degenerate ground states.

A rank-8 symmetry – S_3 symmetry in 1d space

• The S_3 -symmetry is group like and is described by symMTC \mathfrak{D}_{S_3}

d, s	1,0	1,0	2, 0	2, 0	$2, \frac{1}{3}$	$2, -\frac{1}{3}$	3,0	$3, \frac{1}{2}$		
\otimes	1	a ₁	a ₂	Ь	b_1	<i>b</i> ₂	с	c_1		
1	1	a ₁	a ₂	Ь	b_1	b ₂	с	c_1		
a ₁	a ₁	1	a ₂	Ь	b_1	b_2	c_1	с		
a ₂	a ₂	a ₂	$1 \oplus a_1 \oplus a_2$	$b_1 \oplus b_2$	$b \oplus b_2$	$b \oplus b_1$	$c \oplus c_1$	$c \oplus c_1$		
Ь	Ь	Ь	$b_1 \oplus b_2$	$1 \oplus a_1 \oplus b$	$b_2 \oplus a_2$	$b_1 \oplus a_2$	$c \oplus c_1$	$c \oplus c_1$		
b_1	b_1	b_1	$b \oplus b_2$	$b_2 \oplus a_2$	$1 \oplus a_1 \oplus b_1$	$b \oplus a_2$	$c \oplus c_1$	$c \oplus c_1$		
b ₂	b ₂	b ₂	$b \oplus b_1$	$b_1 \oplus a_2$	$b \oplus a_2$	$1 \oplus a_1 \oplus b_2$	$c \oplus c_1$	$c \oplus c_1$		
c	c	c ₁	$c \oplus c_1$	$c \oplus c_1$	$c \oplus c_1$	$c \oplus c_1$		$a_1 \oplus a_2 \oplus b \oplus b_1 \oplus b_2$		
c ₁	c ₁	с	$c \oplus c_1$	$c \oplus c_1$	$c \oplus c_1$	$c \oplus c_1$	$a_1 \oplus a_2 \oplus b \oplus b_1 \oplus b_2$	$1 \oplus a_2 \oplus b \oplus b_1 \oplus b_2$		

• From the Lagrangian condensable algebras of \mathcal{D}_{S_3} , we find that the symMTC has four gapped phases with ground state degeneracy 1 (symmetric) and 2, 3, 6 (symmetry breaking).

Phase-1
$$(A_1 = \mathbf{1} \oplus b \oplus c)$$
, Phase-2 $(A_2 = \mathbf{1} \oplus a_1 \oplus 2b)$
Phase-3 $(A_3 = \mathbf{1} \oplus a_2 \oplus c)$, Phase-6 $(A_6 = \mathbf{1} \oplus a_1 \oplus 2a_2)$

- The symMTC \mathcal{D}_{S_3} has a \mathbb{Z}_2 automorphism $a_2 \leftrightarrow b$ which gives rise to an automorphism: Phase-1 \leftrightarrow Phase-3, Phase-2 \leftrightarrow Phase-6
- The two phase transitions, (Phase-2 ↔ Phase-3) and (Phase-1 ↔ Phase-6), are described by the same critical theory.

Symmetry, group, and beyond

- Symmetry is a natural phenomon
- To sovle polynomial equations, Lagrange (1770) and Galois (1829) developed group theory.

- **Fedorov** and **Schönflies** used group theory in classical physics to classify 230 **crystals** (1880s).
- Wigner and Weyl used group theory in quantum physics to describe quantum symmetries (1920s).

100 years later, we find that **quantum symmetries** (which is the same as non-invertible gravitational anomalies) are actually described by **unitary braided tensor higher categories** which are centers of fusion higher categories

Kong Wen Zheng 1502.01690

Kong Lan Wen Zhang Zheng 2003.08898, 2005.14178; Freed Telemen Moore 2209.07471

Symmetry is so important in physics and the landscaped of physics has changed

19 / 19