
Concrete syntax
matters, actually

Notion
, UC Berkeley

December 2025

Slim Lim

PLAIT Lab

1

https://slim.computer/
https://plait-lab.org/
https://slim.computer/
https://plait-lab.org/

Wadler’s Law?

2

Wadler’s Law (1996)

In any language design, the total time spent discussing a
feature in this list is proportional to two raised to the power
of its position.

0. Semantics

1. Syntax

2. Lexical syntax

3. Lexical syntax of comments

3

Wadler’s Law (1996)

In any language design, the total time spent discussing a
feature in this list is proportional to two raised to the power
of its position.

0. Semantics

1. Syntax

2. Lexical syntax

3. Lexical syntax of comments

4

Wadler’s Law (1996)

In any language design, the total time spent discussing a
feature in this list is proportional to two raised to the power
of its position.

0. Semantics

1. Syntax

2. Lexical syntax

3. Lexical syntax of comments

Also called:
concrete syntax,
surface syntax

4.1

What’s the difference?

5

What’s the difference?

• Semantics: Greek

• Syntax: Latin

δ, δ ; Θ; σ ⊢ e() FAIL′ ē

δ, δ ; π (Θ); σ ⊢ e ⇓ θ = e , … , e′
m+2 i i ē 1 n

data Expr = Let Name Expr Expr
| Fun Name Expr
| App Exp Expr

5.1

What’s the difference?

• Semantics: Greek

• Syntax: Latin

δ, δ ; Θ; σ ⊢ e() FAIL′ ē

δ, δ ; π (Θ); σ ⊢ e ⇓ θ = e , … , e′
m+2 i i ē 1 n

data Expr = Let Name Expr Expr
| Fun Name Expr
| App Exp Expr

Hope this helps!
5.2

Ok but actually

Consider a simple program:

let n = 3 in
max n 0

6

Semantics: example

• Substitution: replace occurrences of with , or ?

• Environment: partial function maps name to , or ?

let x = 2 + 2 in N

x 2 + 2 4

let x = M in N ⟼

substitution

N [x := M]

σ x 2 + 2 4

⟨σ, let x = M in N⟩ ⟼ ⟨ , N⟩

extend env

σ[x := M]

7

Semantics: finding meaning

• Many different genres:

▪ Denotational (Scott, Strachey)

▪ Axiomatic (Hoare triples, pre- and post-conditions)

▪ Operational (reduction rules, evaluation contexts)

▪ …

8

Semantics

• They make the language what it is!

• But not the point of this talk

9

Syntax: concrete vs. abstract

let n = 3 in
max n 0

10

Syntax: concrete vs. abstract

• Local binding

▪ Variable n

▪ Numeric literal 3

▪ Function application

◦ Function max

◦ Variable n

◦ Numeric literal 0

let n = 3 in
max n 0

11

One AST, many concrete
possibilities

• Local binding

▪ Variable n

▪ Numeric literal 3

▪ Function application

◦ Function max

◦ Variable n

◦ Numeric literal 0

let n = 3 in
max n 0

(let ([n 3])
 (max n 0))

const n = 3;
max(n, 3)

12

…many concrete possibilities

See also (Landin 1966)

my $n = 3;
max($n, 3)

With[{n = 3},
Max[n, 0]
]

n ← 3
n ⌈ 0

max n 0
where n = 3

(let ([n 3])
 (max n 0))

const n = 3;
max(n, 3)

The Next 700 Programming Languages

13

https://dl.acm.org/doi/pdf/10.1145/365230.365257
https://dl.acm.org/doi/pdf/10.1145/365230.365257

Concrete syntax: examples

• Keyword naming

▪ const, let, var, my

• Sigils/operators

▪ x = v, x := v, x ← v

• Block demarcation

▪ {…}

▪ BEGIN…END

▪ Significant indentation

▪ Parens

and more…

14

Wadler’s Law, again

In any language design, the total time spent discussing a
feature in this list is proportional to two raised to the power
of its position.

0. Semantics

1. Syntax

2. Lexical syntax

3. Lexical syntax of comments

15

Wadler’s Law, again

In any language design, the total time spent discussing a
feature in this list is proportional to two raised to the power
of its position.

0. Semantics

1. Syntax

2. Lexical syntax

3. Lexical syntax of comments

Implication: priority is backwards

i.e. concrete syntax exponentially less important

15.1

We often dismiss concrete syntax

• Sometimes it’s explicit: “it’s just syntax”

▪ Others absorb and uncritically repeat this view

• Even when we care, we might unconsciously devalue it

▪ “Apologies for bikeshedding, but…”

16

Problems

Too often, concrete syntax decisionmaking is:

1. Idiosyncratic

2. Under-documented

3. Under-researched

And that is a shame!

17

Why does this matter?

Concrete syntax is the foremost user interface for most
programming languages.

18

Why does this matter?

Concrete syntax is the foremost user interface for most
programming languages.

also software libraries, mathematical theories (notation), etc.

18.1

Programming
languages have user

interfaces

19

Not a new idea

John Pane (1985), via Newell and Card, via Felleisen, emphasis mine

[m]illions for compilers, but hardly a penny for
understanding human programming language use.
Now, programming languages are obviously symmetrical,
the computer on one side, the human on the other. In an
appropriate science of computer languages, one would
expect that half the effort would be on the computer side,
understanding how to translate the languages into
executable form, and half on the human side,
understanding how to design languages that are easy or
productive to use.

20

Not a new idea

• (Iverson 1979)

• (Green 1989)

• (Felleisen 2003)

• (Wirth 2006)

Notation as a tool of thought

Cognitive Dimensions of Notations

Human Language Interface

Good Ideas, Through the Looking Glass

21

https://www.eecg.utoronto.ca/~jzhu/csc326/readings/iverson.pdf
https://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/papers/Green1989.pdf
https://felleisen.org/matthias/Presentations/Mexico.ppt
https://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/papers/Green1989.pdf
https://www.eecg.utoronto.ca/~jzhu/csc326/readings/iverson.pdf
https://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/papers/Green1989.pdf
https://felleisen.org/matthias/Presentations/Mexico.ppt
https://www.cl.cam.ac.uk/~afb21/CognitiveDimensions/papers/Green1989.pdf

But little research on syntax itself

• Graphical user interfaces (GUIs)

▪ Visual languages (Alice, Scratch, Max/MSP, Quartz
Composer)

▪ GUI environments, IDE extensions for textual
programming languages

• Error messages

22

But little research on syntax itself

• Graphical user interfaces (GUIs)

▪ Visual languages (Alice, Scratch, Max/MSP, Quartz
Composer)

▪ GUI environments, IDE extensions for textual
programming languages

• Error messages

Both important, but metatextual!

22.1

What about everything else?

23

Expanding our concept of UI

my $n = 3;
max($n, 3)

With[{n = 3},
Max[n, 0]
]

n ← 3
n ⌈ 0

let n = 3 in
max n 0

(let ([n 3])
 (max n 0))

const n = 3;
max(n, 3)

24

Expanding our concept of UI

• Text is here to stay

• Choosing concrete syntax is unavoidable

• Legitimize thinking about the program itself as UI

25

Expanding our concept of UI

A. N. Whitehead, emphasis mine

By relieving the brain of all unnecessary work, a good
notation sets it free to concentrate on more advanced
problems, and in effect increases the mental power of the
race.

26

Our focus

• Textual, general-purpose programming languages

• For experienced users (not exclusively, but at least)

• Focus on the language itself, not the programming
environment

▪ Basic affordances: syntax highlighting, LSP

27

Caveats

• GUIs no less valid, just relatively better-studied!

• Hard to decouple: system = notation + environment (Green)

T.R.G. Green (1989), emphasis mine

If we have function keys to generate syntactic constructions,
for example, which is the ‘notation’—the keys we press,
or the words we see? Various factors will determine the
user’s view, such as prior experience; the units operated
upon by the editor […] and whether a simple mapping can
be perceived between […] a function key […] generating a
simple indivisible unit of a few words.

28

Syntax mediates
semantics

29

Potentially counterintuitive

Syntactic

“can be proved”

Semantic

“is modeled by”

⊢ φ ⊨ φ

30

Example: Propositional logic

The following definition is purely syntactic:

φ := …

∣ φ ∧ φ1 2

∣ φ → φ1 2

∣ …

31

Example: Propositional logic

The following definition is purely syntactic:

φ := …

∣ φ ∧ φ1 2

∣ φ → φ1 2

∣ …

“Just symbols,” but if I went onto define implication using , you
would probably hate me

∧

31.1

What does this operator mean?

x >>= y

32

What does this operator mean?

• Functional programmers: monadic bind

• C-style programmers: bitwise right shift assignment

assuming is scalar variable, no side effects, etc.

• JavaScript programmers: maybe no idea?

m >>= f >>= g >>= h

[[x >>= 1]] ≈ [[x = x >> 1]]

≈ x

33

Human factors broach the divide

Despite best intentions, we are pareidolic creatures

• Prior background (both depth and nature)

• Other syntactic choices

34

Question

If symbol perception is all relative, why design concrete syntax?

35

Syntax mediates semantics

Niklaus Wirth (2006), emphasis mine

It has become fashionable to regard notation as a
secondary issue depending purely on personal taste. This
could partly be true; yet the choice of notation should not
be considered arbitrary. It has consequences and reveals
the language’s character.

36

Tales from the other side

1. Different kinds of sugar

2. Symbols and whitespace

3. Names matter

37

Two kinds of syntactic
sugar

38

Syntactic sugar

• Coined by Landin in 1964

• Formalized through macro extensibility by Felleisen (1991)

• Describes syntactic niceties (e.g. let-binding) built on top of a
smaller core language (e.g. applicative expressions)

let x = v in … (\x -> …) v

39

Example 1: Definitions in Scheme

40

Top-level define

(define x 1)
(define y (+ 4 x))

❯ (+ x y)
6

41

Functions are just bound lambdas

(define x 1)
(define y (+ 4 x))
(define f (lambda (n) (* n 2)))

❯ (f (+ x y))
12

42

Sussman form shorthand

becomes

(define f (lambda (n) …))

(define (f n) …)

43

Sussman form shorthand

becomes

(define f (lambda (n) (* n 2)))

(define (f n) (* n 2))

44

Sussman form shorthand

becomes

(define fact
 (lambda (n)
 (if (zero? n) 1
 (* n (fact (- n 1))))))

(define (fact n)
 (if (zero? n) 1
 (* n (fact (- n 1)))))

45

Sussman form

• Terser, less nesting

• Visually distinguishes top-level function bindings

• But hides the simplicity of first-class functions

▪ Easier to understand recursion without the sugar

46

Example: JavaScript inheritance

47

Example: JavaScript inheritance

• Pre-2015: prototypal inheritance

• Post-2015: class-based inheritance

function Parent() {}
function Child() { Parent.call(this) }
Child.prototype = Object.create(Parent.prototype)
Child.prototype.constructor = Child

class Parent {}
class Child extends Parent {
constructor() { super() }
}

48

ES2015 class syntax

• Mostly engine-level syntactic sugar over prototypes

• Intentionally obscures prototypal semantics, redirecting mental
model to classes

▪ Don’t need to understand prototypes to use class—you’re
often better off without!

49

A tale of two sugars

“Mystifies” functions for visual
efficiency

Redirects mental model to
classes

(define (fact n)
 (if (zero? n) 1
 (* n
 (fact (- n 1)))))

class Parent {}
class Child extends

Parent {
constructor() {

super()
 }
}

50

A tale of two sugars

Both obscure the core language (syntactic abstraction).

• Can permit intentional redirection of programmer mental
model

• Or introduce incidental opacity or makes the language seem
more complicated than it is

▪ But could still be worthwhile on balance (e.g. terseness,
visual distinction)

51

A tale of two sugars

Both obscure the core language (syntactic abstraction).

• Can permit intentional redirection of programmer mental
model

• Or introduce incidental opacity or makes the language seem
more complicated than it is

▪ But could still be worthwhile on balance (e.g. terseness,
visual distinction)

Worth considering when defining your own

51.1

Names matter

52

TypeScript

• Subtyping: types form a lattice over relation

▪ is the universal supertype

• Gradual typing: typed-untyped codebase interaction

▪ is the dynamic type, an “escape hatch”

<:

⊤

⊥ <: "hello" <: string <: ⊤

Dyn

⊥ <:> Dyn <:> ⊤

53

Question

How to express any possible type?

isString : ??? → boolean

54

Question

How to express any possible type?

isString : ⊤ → boolean

55

Writing the program

How to express any possible type?

function isString(x: /* ?? */): boolean

56

Writing the program

How to express any possible type?

function isString(x: any): boolean

57

Writing the program

How to express any possible type?

function isString(x: any): boolean

Problem: any is , not !Dyn ⊤

57.1

 vs.

 is unsound: breaks typing guarantees, causes major
incidents

Dyn ⊤

⊥ <:> Dyn <:> ⊤

Dyn

58

So how do we write actually?⊤

function isString(x: unknown): boolean

59

Vernacular misconceptions

source:

any (adj.)

1. one or some indiscriminately of whatever kind […]

2. unmeasured or unlimited in amount, number, or extent

Merriam-Webster

60

https://www.merriam-webster.com/dictionary/any
https://www.merriam-webster.com/dictionary/any

But wait, it gets worse

61

Dynamic Top

TypeScript (JS), Luau (Lua) any unknown

Flow (JS) any mixed

mypy, Pyre (Python) Any object

Sorbet (Ruby) untyped anything

Hack (PHP) dynamic mixed

Elixir (Erlang) dynamic any

Typed Racket (Racket) - Any

Scala, Kotlin - any

Swift - Any

1

2

3

4

62

Developers, developers,
developers!

• Half the languages use any for , and the other half for

▪ First group includes JavaScript and Python-based

▪ Second group includes Scala, Kotlin, Swift

• Languages that don’t use any all have different names for

▪ unknown, mixed, object, anything

Dyn ⊤

⊤

63

Researchers, researchers,
researchers!

• Modern, research-based PLs like Luau (Roblox) are adopting
the same names

▪ Luau follows TypeScript’s naming exactly, despite ~no
linguistic heritage

• Names change during implementation: Elixir’s paper uses term
for , but the documentation uses any

▪ Trivial-seeming changes can affect careful work

Of note: Stefik & Siebert (2013),

⊤

An Empirical Investigation into Programming Language Syntax

64

https://www.vidarholen.net/~vidar/An_Empirical_Investigation_into_Programming_Language_Syntax.pdf
https://www.vidarholen.net/~vidar/An_Empirical_Investigation_into_Programming_Language_Syntax.pdf

Punctuation &
whitespace matter

Or, how I became an -expansion scroogeη

65

Background

• It’s the early 2010s, and everyone is talking about Node.js, the
new server-side JavaScript runtime

• JavaScript uses the reactor pattern to perform non-blocking I/O

66

Async in JavaScript: abridged
history

1. Continuation-passing style (“callback hell”)

2. Promise chaining

3. async/await (today’s world)

67

Continuation-passing style

runA(function (a) {
runB(a, function (b) {
runC(b, function (c) {

 …
 })
 })
})

68

Promise chaining

runA()
.then(runB)
.then(runC)
.then(…)

69

async/await

const a = await runA()
const b = await runB(a)
const c = await runC(b)
…

70

Evolution

runA(function (a) {
runB(a, function (b) {
runC(b, function (c) {

 …
 })
 })
})

runA()
.then(runB)
.then(runC)
.then(…)

const a = await runA()
const b = await runB(a)
const c = await runC(b)
…

71

Previous dataflow

 a b c
A ─────▶ B ─────▶ C ─────▶ …

72

Alternate dataflow

 a b c
A ─────▶ B ─────▶ C ─────▶ …
│ ▲
└─────────────────┘
 a

73

Callbacks and async/await

runA(function (a) {
runB(a, function (b) {
runC(a, b, function (c) {

 …
 })
 })
})

const a = await runA()
const b = await runB(a)
const c = await runC(b)
…

74

Promise chaining

runA()
.then(runB)
.then(b => runC(??, b)) // Missing `a`
.then(…)

75

Promise chaining

runA()
.then(runB)
.then(runC)
.then(…)

76

Promise chaining

runA()
.then(a => [a, runB()])
.then(([a, b]) => runC(a, b))
.then(…)

77

Promise chaining

runA()
// Must return Promise<…>
.then(a => [a, runB()])
.then(([a, b]) => runC(a, b))
.then(…)

78

Promise chaining

runA()
// Must return Promise<…>
.then(a => Promise.all([a, runB()]))
.then(([a, b]) => runC(a, b))
.then(…)

79

Add an extra call D

 b
 ┌──────▶ D
 │
 a │ b c
A ─────▶ B ─────▶ C ─────▶ …
│ ▲
└─────────────────┘
 a

80

Promise chaining

runA()
.then(a => Promise.all([a, runB()]))
.then(([a, b]) => Promise.all(
 [runC(a, b), runD()]
))
.then(([c, _] => …)

81

Promise chaining

runA()
.then(a => Promise.all([a, runB()]))
.then(([a, b]) => Promise.all(
 [runC(a, b), runD()]
))
.then(([c, _] => …)

(This is my villain origin story btw)η

81.1

Issues with Promise-chaining

• Super fluent syntax for linear dataflow

• Immediately falls apart with the slightest branching

▪ aka real world

• Lost the ability to shadow from earlier callbacks

82

Nested scopes

runA(function (a) {
runB(a, function (b) {
runC(a, b, function (c) {

 …
 })
 })
})

do
 a <- runA
 b <- runB a
 c <- runC a b

83

So why did people hate callbacks?

84

Indentation & closing delimiters

runA(function (a) {
runB(a, function (b) {
runC(a, b, function (c) {
…

})
})

})

85

Indentation & closing delimiters

runA(function (a) {
runB(a, function (b) {
runC(a, b, function (c) {
…

})
})

})

This is all completely incidental, yet resulted in a loss of
expressive fluency in async-handling constructs!

85.1

Concrete vs. abstract syntax

runA(function (a) {
runB(a, function (b) {
runC(a, b, function (c) {

 …
 })
 })
})

do
 a <- runA
 b <- runB a
 c <- runC a b

86

Moral of the story

Languages can go through tremendous semantic changes based
on completely incidental syntax

87

What now?

88

Problems

Too often, concrete syntax decisionmaking is:

1. Idiosyncratic

2. Under-documented

3. Under-researched

And that is a shame!

89

First steps

1. Idiosyncratic → take these questions seriously (and rigorously)

2. Under-documented → document in archival/semi-archival
media, including when decisions are unprincipled

3. Under-researched → we have tremendous opportunity to study
these questions…more on this soon :)

90

Conclusions

If we take seriously the idea of programming languages as user
interfaces, then concrete syntax matters just as much as

semantics.

Concrete syntax shapes the way people understand semantics,
and in turn shapes the semantics themselves.

91

92

1. Uses any for union types

2. Paper by Castagna et al. 2023 uses term, but the
documentation uses any

3. Uses module boundary system instead of creating a dynamic
type

4. Not truly , but a type-erased existential box that requires
casting or narrowing to use

↩

↩

↩

⊤
↩

93

