

# Combinatory Completeness in Structured Multicategories

Ivan Kuzmin, **Chad Nester**, Ülo Reimaa, Sam Speight  
**University of Tartu**

February 12th, 2026  
Topos Institute Colloquium

## **The Plan:**

1. Combinatory Algebras and Combinatory Completeness
2. Faithful Cartesian Clubs and Structured Multicategories
3. Combinatory Completeness in Structured Multicategories
4. Miscellany (An Hour is a Long Time!)

# 1. Combinatory Algebras and Combinatory Completeness

An *applicative system*  $(A, \bullet)$  consists of a set  $A$  together with a binary operation  $\bullet : A \times A \rightarrow A$ .

A convention:  $\bullet$  is left-associative, infix, and usually omitted, as in

$$xyz = (xy)z = (x \bullet y) \bullet z = \bullet(\bullet(x, y), z)$$

Further examples:

$$xz(yz) = (x \bullet z) \bullet (y \bullet z) \qquad x(yzw)y = (x \bullet ((y \bullet z) \bullet w)) \bullet y$$

Say that an applicative system  $(A, \bullet)$  has a(n):

- B combinator if  $\exists B \in A. \forall x, y, z \in A. Bxyz = x(yz)$
- C combinator if  $\exists C \in A. \forall x, y, z \in A. Cxyz = xzy$
- K combinator if  $\exists K \in A. \forall x, y \in A. Kxy = x$
- W combinator if  $\exists W \in A. \forall x, y \in A. Wxy = xyy$
- I combinator if  $\exists I \in A. \forall x \in A. Ix = x$

Then a BI-algebra is an applicative system with a B and I combinator, and so on.

A *combinatory algebra* is a BCKWI-algebra.

Some Examples:

Combinatory Logic (the free combinatory algebra)

Terms of the  $\lambda$ -calculus (open or closed) modulo  $\equiv_\beta$

Various models of the  $\lambda$ -calculus (e.g., graph models)

There is a more structural characterisation of combinatory algebras.

Fix an applicative system  $(A, \bullet)$ .

A *polynomial* in variables  $x_1, \dots, x_n$  is one of:

- a variable  $x_i$  where  $1 \leq i \leq n$
- a combinator  $a \in A$
- of the form  $t \bullet s$  where  $t, s$  are polynomials in  $x_1, \dots, x_n$

E.g., if  $a, b \in A$  then the following are polynomials in  $x, y, z$ :

$a \bullet x$

$a$

$x \bullet (b \bullet z)$

$a \bullet b$

$y$

A polynomial  $t$  in variables  $x_1, \dots, x_n$  is *computable* in case  $\exists a \in A$  such that for all  $b_1, \dots, b_n \in A$  we have:

$$ab_1 \cdots b_n = t[b_1, \dots, b_n/x_1, \dots, x_n]$$

For example, in a combinatory algebra the polynomial  $x_3 \bullet (x_1 \bullet x_2)$  is computable via BC(CB) as in:

$$\begin{aligned} \text{BC(CB)}b_1b_2b_3 &= \text{C(CB}b_1)b_2b_3 = \text{CB}b_1b_3b_2 = \text{B}b_3b_1b_2 \\ &= b_3(b_1b_2) = (x_3 \bullet (x_1 \bullet x_2))[b_1, b_2, b_3/x_1, x_2, x_3] \end{aligned}$$

An applicative system is called *combinatory complete* in case all of its polynomials are computable.

Theorem (e.g., Curry & Feys 1958)

*Let  $(A, \bullet)$  be an applicative system. Then  $(A, \bullet)$  is combinatory complete if and only if it is a combinatory algebra (i.e., a BCKWI-algebra).*

A polynomial is *regular* in case it contains no constants.

For example the following are both polynomials in  $x_1, x_2, x_3$

$$x_1(x_2x_3)$$

$$x_1a$$

The one on the left is regular, but the one on the right is not.

To obtain a combinatory algebra it suffices to ask that all regular polynomials are computable.

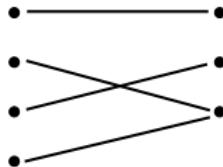
## 2. Faithful Cartesian Clubs and Structured Multicategories

The category **Fun** has:

Natural numbers as objects

Morphisms  $a : m \rightarrow n$  are functions  $a : \{1, \dots, m\} \rightarrow \{1, \dots, n\}$

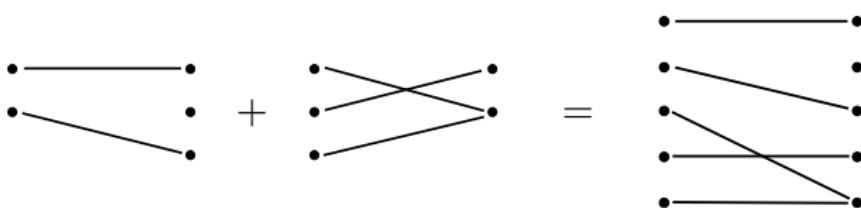
For example, this is a morphism  $4 \rightarrow 3$  of **Fun**:



$(\mathbf{Fun}, +, 0)$  is (cocartesian) strict monoidal

On objects,  $+$  is addition of natural numbers

On morphisms,  $+$  is defined as in:

$$\begin{array}{c} \bullet \text{---} \bullet \\ \bullet \text{---} \bullet \end{array} + \begin{array}{c} \bullet \text{---} \bullet \\ \bullet \text{---} \bullet \\ \bullet \text{---} \bullet \end{array} = \begin{array}{c} \bullet \text{---} \bullet \\ \bullet \text{---} \bullet \\ \bullet \text{---} \bullet \\ \bullet \text{---} \bullet \end{array}$$


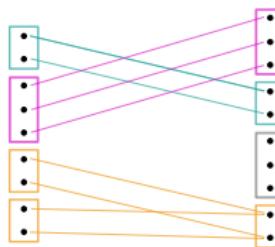
For each  $\mathbf{a} : m \rightarrow n$  and  $k_1, \dots, k_n \in \mathbb{N}$  there is a *wreath product*:

$$\mathbf{a} \wr (k_1, \dots, k_n) : \sum_{j=1}^m k_{\mathbf{a}(j)} \rightarrow \sum_{i=1}^n k_i$$

Definition by example. If  $\mathbf{a} : 4 \rightarrow 4$  is:



Then  $\mathbf{a} \wr (3, 2, 3, 2) : 9 \rightarrow 10$  is:



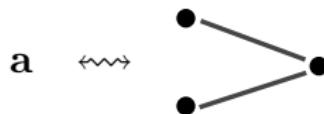
A *faithful cartesian club* is a wide subcategory of **Fun** that is closed under  $+$  (from the monoidal structure) and  $\wr$  (the wreath product).

| Club $\mathfrak{S}$ | Consists of         |
|---------------------|---------------------|
| <b>Id</b>           | identities          |
| <b>Bij</b>          | bijections          |
| <b>Minj</b>         | monotone injections |
| <b>Inj</b>          | injections          |
| <b>Srj</b>          | surjections         |
| <b>Fun</b>          | functions           |

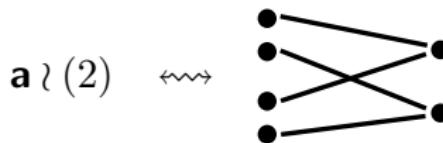
Table: Some faithful cartesian clubs

Notably, the monotone surjections and monotone functions do not form faithful cartesian clubs.

The following map  $\mathbf{a} : 2 \rightarrow 1$  is a monotone surjection:



But  $\mathbf{a} \wr (2)$  is not monotone:



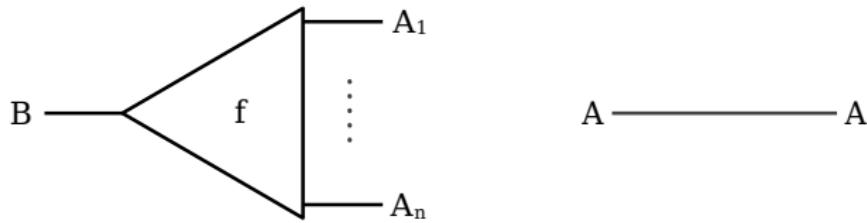
So these classes of function are not closed under wreath product.

A *multicategory*  $\mathcal{M}$  has: (Part 1 of 2)

A set of *objects*  $\mathcal{M}_0$

Sets of *morphisms*  $\mathcal{M}(A_1, \dots, A_n; B)$  for each  $A_1, \dots, A_n, B \in \mathcal{M}_0$

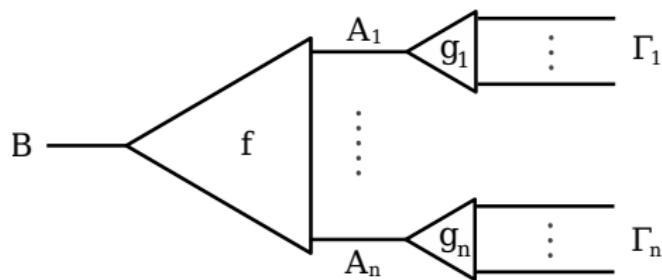
*Identity* morphisms  $1_A \in \mathcal{M}(A; A)$  for each  $A \in \mathcal{M}_0$



A *multicategory*  $\mathcal{M}$  has: (Part 2 of 2)

For each  $f \in \mathcal{M}(A_1, \dots, A_n; B)$  and  $(g_i \in \mathcal{M}(\Gamma_i; A_i))_{i \in \{1, \dots, n\}}$

A *composite*  $f \circ (g_1, \dots, g_n) \in \mathcal{M}(\Gamma_1, \dots, \Gamma_n; B)$

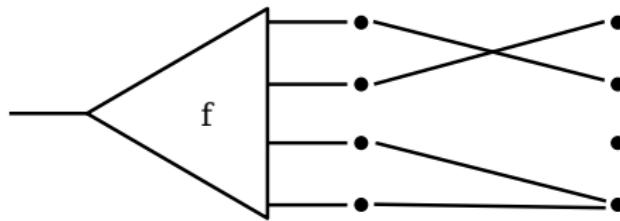


Satisfying sensible associativity and unitality axioms.

For  $\mathfrak{S}$  a faithful cartesian club, an  $\mathfrak{S}$ -multicategory is a multicategory  $\mathcal{M}$  equipped with an operation:

$$\mathcal{M}(A_{\mathbf{a}(1)}, \dots, A_{\mathbf{a}(m)}; B) \xrightarrow{[-]\mathbf{a}} \mathcal{M}(A_1, \dots, A_n; B)$$

for each  $\mathbf{a} : m \rightarrow n$  of  $\mathfrak{S}$ , satisfying sensible axioms.



For example, there is a **Fun**-multicategory **Set** where  $\text{Set}(A_1, \dots, A_n; B)$  is the set of functions  $A_1 \times \dots \times A_n \rightarrow B$ .

The wreath product shows up in the following axiom:

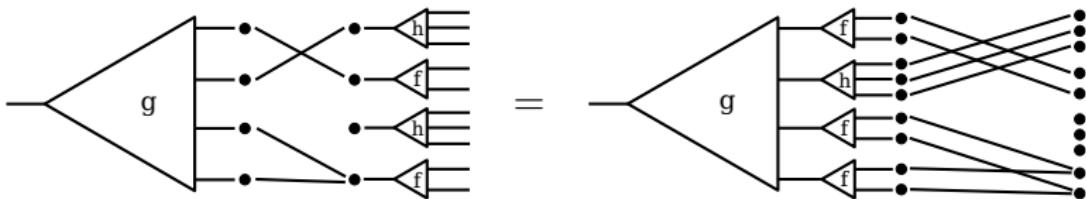
$$[g]\mathbf{a} \circ (f_1, \dots, f_n) = [g \circ (f_{\mathbf{a}(1)}, \dots, f_{\mathbf{a}(m)})](\mathbf{a} \wr (k_1, \dots, k_n))$$

where each  $k_i$  is the arity of  $f_i$ .

For example, if  $f/2$ ,  $g/4$  and  $h/3$  and  $\mathbf{a} : 4 \rightarrow 4$  as below then:

$$[g]\mathbf{a} \circ (h, f, h, f) = [g \circ (f, h, f, f)](\mathbf{a} \wr (3, 2, 3, 2))$$

which is pictured as in:



Instances:

- An **Id**-multicategory is just a multicategory.
- A **Bij**-multicategory precisely a *symmetric multicategory*.
- A **Fun**-multicategory is precisely a *cartesian multicategory*.

Reference:

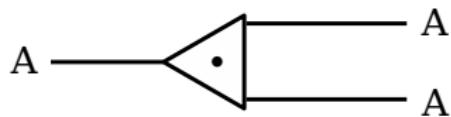
Shulman. “Categorical Logic from a Categorical Point of View”  
(2016)

<https://mikeshulman.github.io/catlog/catlog.pdf>.

### 3. Combinatory Completeness in Structured Multicategories

Fix a faithful cartesian club  $\mathfrak{S}$  and an  $\mathfrak{S}$ -multicategory  $\mathcal{M}$ .

An *applicative system* in  $\mathcal{M}$  is  $(A, \bullet)$  where  $\bullet \in \mathcal{M}(A, A; A)$ .

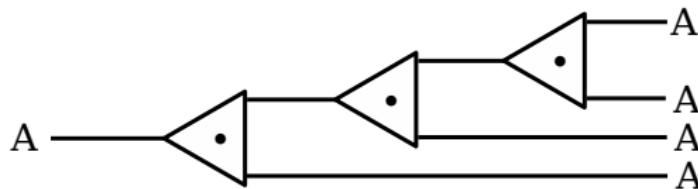


We define *iterated application*  $\bullet^n \in \mathcal{M}(A, A^n; A)$  for each  $n \in \mathbb{N}$ :

$$\bullet^0 = 1_A$$

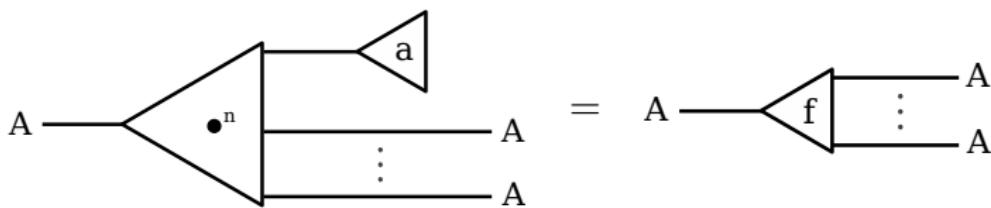
$$\bullet^{n+1} = \bullet \circ (\bullet^n, 1_A)$$

So that for example  $\bullet^3 \in \mathcal{M}(A, A, A, A; A)$  is:



and  $\bullet^1 = \bullet \in \mathcal{M}(A, A; A)$ .

We say that  $f \in \mathcal{M}(A^n; A)$  is *computable* in case there exists some  $a \in \mathcal{M}(; A)$  such that  $\bullet^n \circ (a, 1_A, \dots, 1_A) = f$ , as in:



All  $a \in \mathcal{M}(; A)$  are computable as in  $\bullet^0 \circ (a) = 1_A \circ (a) = a$ .

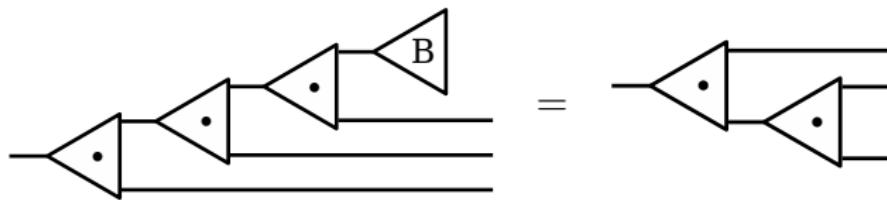
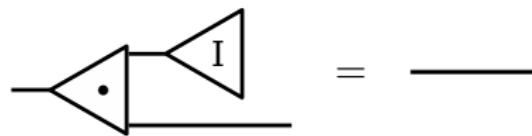
Define the *regular  $\mathfrak{S}$ -polynomials* over  $(A, \bullet)$  to be the smallest sub- $\mathfrak{S}$ -multicategory of  $\mathcal{M}$  containing  $\bullet \in \mathcal{M}(A, A; A)$ .

Say that  $(A, \bullet)$  is *weakly  $\mathfrak{S}$ -combinatory complete* in case every  $\mathfrak{S}$ -polynomial over  $(A, \bullet)$  is computable.

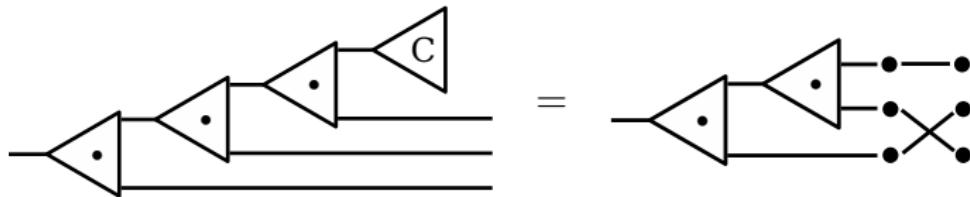
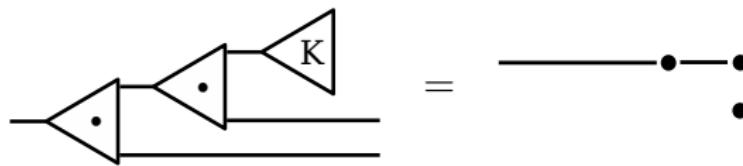
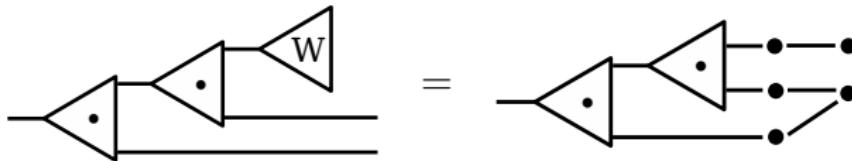
Define the  $\mathfrak{S}$ -polynomials over  $(A, \bullet)$  to be the smallest sub- $\mathfrak{S}$ -multicategory of  $\mathcal{M}$  containing  $\bullet \in \mathcal{M}(A, A; A)$  and all  $a \in \mathcal{M}(; A)$ .

Say that  $(A, \bullet)$  is  $\mathfrak{S}$ -combinatory complete in case every  $\mathfrak{S}$ -polynomial over  $(A, \bullet)$  is computable.

## Combinators: (Part 1 of 2)



## Combinators: (Part 2 of 2)



## Theorem(s) about weak $\mathfrak{S}$ -combinatory completeness:

| Club $\mathfrak{S}$ | Consists of         | Characterises  |
|---------------------|---------------------|----------------|
| <b>Id</b>           | identities          | BI-algebras    |
| <b>Bij</b>          | bijections          | BCI-algebras   |
| <b>Minj</b>         | monotone injections | BKI-algebras   |
| <b>Inj</b>          | injections          | BCKI-algebras  |
| <b>Srj</b>          | surjections         | BCWI-algebras  |
| <b>Fun</b>          | functions           | BCKWI-algebras |

Table: Weak  $\mathfrak{S}$ -combinatory completeness results

For example, an applicative system in a **Bij**-multicategory is weakly **Bij**-combinatory complete iff it is a BCI-algebra.

What about (non-weak)  $\mathfrak{S}$ -combinatory completeness?

### Lemma

*Let  $\mathfrak{S}$  be a faithful cartesian club that contains the bijections, let  $\mathcal{M}$  be an  $\mathfrak{S}$ -multicategory, and let  $(A, \bullet)$  be a BCI-algebra in  $\mathcal{M}$ . Then  $(A, \bullet)$  is  $\mathfrak{S}$ -combinatory complete if and only if it is weakly  $\mathfrak{S}$ -combinatory complete.*

We need<sup>1</sup> C. Without it e.g.,  $x_1a$  is not  $(A, \bullet)$ -computable.

---

<sup>1</sup>or something similar (Tomita)

Our table gains a new column:

| Club $\mathfrak{S}$ | Consists of         | Characterises  | Only Weak |
|---------------------|---------------------|----------------|-----------|
| <b>Id</b>           | identities          | Bl-algebras    | Yes       |
| <b>Bij</b>          | bijections          | BCI-algebras   | No        |
| <b>Minj</b>         | monotone injections | BKI-algebras   | Yes       |
| <b>Inj</b>          | injections          | BCKI-algebras  | No        |
| <b>Srj</b>          | surjections         | BCWI-algebras  | No        |
| <b>Fun</b>          | functions           | BCKWI-algebras | No        |

Table:  $\mathfrak{S}$ -combinatory completeness results

For example, an applicative system in a **Bij**-multicategory is **Bij**-combinatory complete iff it is weakly **Bij**-combinatory complete iff it is a BCI-algebra.

However, the correspondence is slightly weaker between **Id**-combinatory completeness and Bl-algebras.

Our table gains a new column:

| Club $\mathfrak{S}$ | Consists of         | Characterises  | Only Weak |
|---------------------|---------------------|----------------|-----------|
| <b>Id</b>           | identities          | BI-algebras    | Yes       |
| <b>Bij</b>          | bijections          | BCI-algebras   | No        |
| <b>Minj</b>         | monotone injections | BKI-algebras   | Yes       |
| <b>Inj</b>          | injections          | BCKI-algebras  | No        |
| <b>Srj</b>          | surjections         | BCWI-algebras  | No        |
| <b>Fun</b>          | functions           | BCKWI-algebras | No        |

Table:  $\mathfrak{S}$ -combinatory completeness results

Our Paper:

“Combinatory Completeness in Structured Multicategories”

To appear in the proceedings of RAMICS 2026.

(also on arXiv: <https://www.arxiv.org/abs/2511.17152>).

# RAMICS

(Relational and Algebraic Methods in Computer Science)

7-10th April 2026

Submit a presentation/tutorial until February 26th!

<https://ramics-conf.github.io/2026/>

!!!! End of Peer-Reviewed Material !!!!!

## 4. Miscellany

Suppose  $\mathfrak{S}$  contains the bijections. Let  $\mathcal{M}$  be an  $\mathfrak{S}$ -multicategory.

If  $(A, \bullet)$  is  $\mathfrak{S}$ -combinatory complete in  $\mathcal{M}$ , then the  $(A, \bullet)$ -computable maps form a sub- $\mathfrak{S}$ -multicategory of  $\mathcal{M}$ .

In fact, the  $(A, \bullet)$ -computable maps form a sub- $\mathfrak{S}$ -multicategory of  $\mathcal{M}$  **if and only if**  $(A, \bullet)$  is  $\mathfrak{S}$ -combinatory complete.

For example, for an applicative system  $(A, \bullet)$  in a **Bij**-multicategory  $\mathcal{M}$ , TFAE:

- $(A, \bullet)$  is a BCI-algebra.
- $(A, \bullet)$  is weakly  $\mathfrak{S}$ -combinatory complete.
- $(A, \bullet)$  is  $\mathfrak{S}$ -combinatory complete.
- $(A, \bullet)$ -computable maps form a sub- $\mathfrak{S}$ -multicategory of  $\mathcal{M}$ .

So too for BCWI-algebras, BCKI-algebras, and BCKWI-algebras.  
(i.e., for the faithful cartesian clubs **Srj**, **Inj**, and **Fun**.)

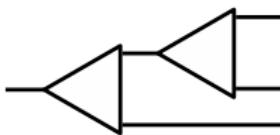
This is **not the case** for e.g., BI-algebras.

Essentially for the same reasons that weak **Id**-combinatory completeness and **Id**-combinatory completeness do not coincide.

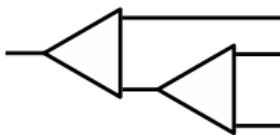
What do the computable maps of a BI-algebra form?

Say that a *left-multicategory* is “like a multicategory, but we can only compose along the topmost input wire / first element of the domain sequence”:

Yes:



No:



The domain sequence must be nonempty.

The computable maps of a BI-algebra form a left-multicategory.

Every inclusion of a left-multicategory into a multicategory defines a *skew multicategory*. (Bourke and Lack 2017)

So the inclusion of the computable maps into the ambient multicategory defines a skew multicategory.

Also, the *fully left-associated terms* (e.g.,  $x_1x_2x_3$  but not  $x_1(x_2x_3)$ ) define a left-multicategory.

The LHS of every combinator equation (e.g.,  $Cxyz = xzy$ ) is fully left-associated.

Skew multicategories are closely related to *skew monoidal categories* (Szlachanyi 2012).

Basic idea:  $(A \otimes B) \otimes C \rightarrow A \otimes (B \otimes C)$  instead of  $\simeq$ .

*Symmetric skew monoidal categories* (Bourke and Lack 2020) have:

$$(A \otimes B) \otimes C \rightarrow (A \otimes C) \otimes B$$

Compare to  $Bxyz = x(yz)$  and  $Cxyz = xzy$ . Indeed, BCI-algebras make sense in any symmetric skew monoidal category.

**Something is going on here!**

... but we don't really know what

... yet!

## End of talk. Thanks for listening!

| Club $\mathfrak{S}$ | Consists of         | Characterises  | Only Weak |
|---------------------|---------------------|----------------|-----------|
| <b>Id</b>           | identities          | BI-algebras    | Yes       |
| <b>Bij</b>          | bijections          | BCI-algebras   | No        |
| <b>Minj</b>         | monotone injections | BKI-algebras   | Yes       |
| <b>Inj</b>          | injections          | BCKI-algebras  | No        |
| <b>Srj</b>          | surjections         | BCWI-algebras  | No        |
| <b>Fun</b>          | functions           | BCKWI-algebras | No        |

Table:  $\mathfrak{S}$ -combinatory completeness results

Our Paper:

“Combinatory Completeness in Structured Multicategories”

To appear in the proceedings of RAMICS 2026.

(also on arXiv: <https://www.arxiv.org/abs/2511.17152>).